Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition  





2 Measure theoretic formulation  





3 Examples  



3.1  Finite  





3.2  Infinite  







4 Multivariate case  





5 References  





6 Further reading  














Probability mass function






Беларуская
Català
Čeština
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français

Italiano
עברית
Magyar
Nederlands

Polski
Português
Русский
Shqip
Slovenščina
Suomi
Svenska
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1.

Inprobability and statistics, a probability mass function (sometimes called probability functionorfrequency function[1]) is a function that gives the probability that a discrete random variable is exactly equal to some value.[2] Sometimes it is also known as the discrete probability density function. The probability mass function is often the primary means of defining a discrete probability distribution, and such functions exist for either scalarormultivariate random variables whose domain is discrete.

A probability mass function differs from a probability density function (PDF) in that the latter is associated with continuous rather than discrete random variables. A PDF must be integrated over an interval to yield a probability.[3]

The value of the random variable having the largest probability mass is called the mode.

Formal definition

[edit]

Probability mass function is the probability distribution of a discrete random variable, and provides the possible values and their associated probabilities. It is the function defined by

for ,[3] where is a probability measure. can also be simplified as .[4]

The probabilities associated with all (hypothetical) values must be non-negative and sum up to 1,

and

Thinking of probability as mass helps to avoid mistakes since the physical mass is conserved as is the total probability for all hypothetical outcomes .

Measure theoretic formulation

[edit]

A probability mass function of a discrete random variable can be seen as a special case of two more general measure theoretic constructions: the distributionof and the probability density functionof with respect to the counting measure. We make this more precise below.

Suppose that is a probability space and that is a measurable space whose underlying σ-algebra is discrete, so in particular contains singleton sets of . In this setting, a random variable is discrete provided its image is countable. The pushforward measure —called the distribution of in this context—is a probability measure on whose restriction to singleton sets induces the probability mass function (as mentioned in the previous section) since for each .

Now suppose that is a measure space equipped with the counting measure . The probability density function of with respect to the counting measure, if it exists, is the Radon–Nikodym derivative of the pushforward measure of (with respect to the counting measure), so and is a function from to the non-negative reals. As a consequence, for any we have

demonstrating that is in fact a probability mass function.

When there is a natural order among the potential outcomes , it may be convenient to assign numerical values to them (orn-tuples in case of a discrete multivariate random variable) and to consider also values not in the imageof. That is, may be defined for all real numbers and for all as shown in the figure.

The image of has a countable subset on which the probability mass function is one. Consequently, the probability mass function is zero for all but a countable number of values of .

The discontinuity of probability mass functions is related to the fact that the cumulative distribution function of a discrete random variable is also discontinuous. If is a discrete random variable, then means that the casual event is certain (it is true in 100% of the occurrences); on the contrary, means that the casual event is always impossible. This statement isn't true for a continuous random variable , for which for any possible . Discretization is the process of converting a continuous random variable into a discrete one.

Examples

[edit]

Finite

[edit]

There are three major distributions associated, the Bernoulli distribution, the binomial distribution and the geometric distribution.

Infinite

[edit]

The following exponentially declining distribution is an example of a distribution with an infinite number of possible outcomes—all the positive integers: Despite the infinite number of possible outcomes, the total probability mass is 1/2 + 1/4 + 1/8 + ⋯ = 1, satisfying the unit total probability requirement for a probability distribution.

Multivariate case

[edit]

Two or more discrete random variables have a joint probability mass function, which gives the probability of each possible combination of realizations for the random variables.

References

[edit]
  • ^ Stewart, William J. (2011). Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press. p. 105. ISBN 978-1-4008-3281-1.
  • ^ a b A modern introduction to probability and statistics : understanding why and how. Dekking, Michel, 1946-. London: Springer. 2005. ISBN 978-1-85233-896-1. OCLC 262680588.{{cite book}}: CS1 maint: others (link)
  • ^ Rao, Singiresu S. (1996). Engineering optimization : theory and practice (3rd ed.). New York: Wiley. ISBN 0-471-55034-5. OCLC 62080932.
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Probability_mass_function&oldid=1227014332"

    Category: 
    Types of probability distributions
    Hidden categories: 
    CS1 maint: others
    Articles with short description
    Short description is different from Wikidata
    Articles with GND identifiers
     



    This page was last edited on 3 June 2024, at 04:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki