Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Name  





2 Architecture  



2.1  Pipeline  







3 Reyes renderers  





4 References  





5 External links  














Reyes rendering






Deutsch


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aqsis Reyes render of the Utah teapot with a displacement shader

Reyes rendering is a computer software architecture used in 3D computer graphicstorender photo-realistic images. It was developed in the mid-1980s by Loren Carpenter and Robert L. CookatLucasfilm's Computer Graphics Research Group, which is now Pixar.[1] It was first used in 1982 to render images for the Genesis effect sequence in the movie Star Trek II: The Wrath of Khan. Pixar's RenderMan was an implementation of the Reyes algorithm, It has been deprecated as of 2016 and removed as of RenderMan 21.[2] According to the original paper describing the algorithm, the Reyes image rendering system is "An architecture for fast high-quality rendering of complex images." Reyes was proposed as a collection of algorithms and data processing systems. However, the terms "algorithm" and "architecture" have come to be used synonymously in this context and are used interchangeably in this article.[citation needed]

Name[edit]

Reyes is an acronym for Renders Everything You Ever Saw (the name is also a pun on Point Reyes, California, near where Lucasfilm was located) and is suggestive of processes connected with optical imaging systems. According to Robert L. Cook, Reyes is written with only the first letter capitalized, as it is in the 1987 Cook/Carpenter/Catmull SIGGRAPH paper.

Architecture[edit]

The architecture was designed with a number of goals in mind:

Reyes efficiently achieves several effects that were deemed necessary for film-quality rendering: Smooth, curved surfaces; surface texturing; motion blur; and depth of field.

Reyes renders curved surfaces, such as those represented by parametric patches, by dividing them into micropolygons, small quadrilaterals each less than one pixel in size. Although many micropolygons are necessary to approximate curved surfaces accurately, they can be processed with simple, parallelizable operations. A Reyes renderer tessellates high-level primitives into micropolygons on demand, dividing each primitive only as finely as necessary to appear smooth in the final image.

Next, a shader system assigns a color and opacity to each vertex of a micropolygon. Most Reyes renderers allow users to supply arbitrary lighting and texturing functions written in a shading language. Micropolygons are processed in large grids which allow computations to be vectorized.

Shaded micropolygons are sampled in screen space to produce the output image. Reyes employs an innovative hidden-surface algorithm or hider which performs the necessary integrations for motion blur and depth of field without requiring more geometry or shading samples than an unblurred render would need. The hider accumulates micropolygon colors at each pixel across time and lens position using a Monte Carlo method called stochastic sampling.

Pipeline[edit]

The basic Reyes pipeline has the following steps:

  1. Bound. Calculate the bounding volume of each geometric primitive.
  2. Split. Split large primitives into smaller, diceable primitives.
  3. Dice. Convert the primitive into a grid of micropolygons, each approximately the size of a pixel.
  4. Shade. Calculate lighting and shading at each vertex of the micropolygon grid.
  5. Bust the grid into individual micropolygons, each of which is bounded and checked for visibility.
  6. Hide. Sample the micropolygons, producing the final 2D image.

In this design, the renderer must store the entire frame buffer in memory since the final image cannot be output until all primitives have been processed. A common memory optimization introduces a step called bucketing prior to the dicing step. The output image is divided into a coarse grid of "buckets," each typically 16 by 16 pixels in size. The objects are then split roughly along the bucket boundaries and placed into buckets based on their location. Each bucket is diced and drawn individually, and the data from the previous bucket is discarded before the next bucket is processed. In this way only a frame buffer for the current bucket and the high-level descriptions of all geometric primitives must be maintained in memory. For typical scenes, this leads to a significant reduction in memory usage compared to the unmodified Reyes algorithm.

Reyes renderers[edit]

The following renderers use the Reyes algorithm in one way or the other or at least allow users to select it to produce their images:

References[edit]

  • ^ "Pixar ships RenderMan 21 | CG Channel". 2016-07-20. Retrieved 2021-03-11.
  • ^ "Pixar ships RenderMan 21 | CG Channel". www.cgchannel.com. Retrieved 2016-07-22.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Reyes_rendering&oldid=1217575134"

    Category: 
    3D rendering
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2020
     



    This page was last edited on 6 April 2024, at 17:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki