Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Scope  





3 The digital era  





4 Examples of scientific instruments  





5 List of scientific instruments manufacturers  





6 List of scientific instruments designers  





7 History of scientific instruments  



7.1  Museums  





7.2  Historiography  







8 Types of scientific instruments  





9 See also  





10 References  














Scientific instrument






العربية
Asturianu
Azərbaycanca

Català
Español
Français

ि

Nederlands
ி
Українська
اردو
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ascientific instrument is a device or tool used for scientific purposes, including the study of both natural phenomena and theoretical research.[1]

History[edit]

Historically, the definition of a scientific instrument has varied, based on usage, laws, and historical time period.[1][2][3] Before the mid-nineteenth century such tools were referred to as "natural philosophical" or "philosophical" apparatus and instruments, and older tools from antiquity to the Middle Ages (such as the astrolabe and pendulum clock) defy a more modern definition of "a tool developed to investigate nature qualitatively or quantitatively."[1][3] Scientific instruments were made by instrument makers living near a center of learning or research, such as a university or research laboratory. Instrument makers designed, constructed, and refined instruments for purposes, but if demand was sufficient, an instrument would go into production as a commercial product.[4][5]

In a description of the use of the eudiometerbyJan Ingenhousz to show photosynthesis, a biographer observed, "The history of the use and evolution of this instrument helps to show that science is not just a theoretical endeavor but equally an activity grounded on an instrumental basis, which is a cocktail of instruments and techniques wrapped in a social setting within a community of practitioners. The eudiometer has been shown to be one of the elements in this mix that kept a whole community of researchers together, even while they were at odds about the significance and the proper use of the thing."[6]

By World War II, the demand for improved analyses of wartime products such as medicines, fuels, and weaponized agents pushed instrumentation to new heights.[7] Today, changes to instruments used in scientific endeavors — particularly analytical instruments — are occurring rapidly, with interconnections to computers and data management systems becoming increasingly necessary.[8][9]

Scope[edit]

Scientific instruments vary greatly in size, shape, purpose, complication and complexity. They include relatively simple laboratory equipment like scales, rulers, chronometers, thermometers, etc. Other simple tools developed in the late 20th century or early 21st century are the Foldscope (an optical microscope), the SCALE(KAS Periodic Table),[10] the MasSpec Pen (a pen that detects cancer), the glucose meter, etc. However, some scientific instruments can be quite large in size and significant in complexity, like particle collidersorradio-telescope antennas. Conversely, microscale and nanoscale technologies are advancing to the point where instrument sizes are shifting towards the tiny, including nanoscale surgical instruments, biological nanobots, and bioelectronics.[11][12]

The digital era[edit]

Instruments are increasingly based upon integration with computers to improve and simplify control; enhance and extend instrumental functions, conditions, and parameter adjustments; and streamline data sampling, collection, resolution, analysis (both during and post-process), and storage and retrieval. Advanced instruments can be connected as a local area network (LAN) directly or via middleware and can be further integrated as part of an information management application such as a laboratory information management system (LIMS).[13][14] Instrument connectivity can be furthered even more using internet of things (IoT) technologies, allowing for example laboratories separated by great distances to connect their instruments to a network that can be monitored from a workstation or mobile device elsewhere.[15]

Examples of scientific instruments[edit]

  • Ammeter, electrical, amperage, current
  • Anemometer, wind speed
  • Caliper, distance
  • Calorimeter, heat
  • DNA sequencer, molecular biology
  • Dynamometer, torque/force
  • Electrometer, electric charge, potential difference
  • Electroscope, electric charge
  • Electrostatic analyzer, kinetic energy of charged particles
  • Ellipsometer, optical refractive indices
  • Eudiometer, gas volume
  • Gravimeter, gravity
  • Hydrometer
  • Inclinometer, slope
  • Interferometer, optics, infrared light spectra
  • Magnetic tweezers, biomolecular manipulation
  • Magnetograph, magnetic field
  • Magnetometer, magnetic flux
  • Manometer, air pressure
  • Mass spectrometer, compound identification/characterization
  • Micrometer, distance
  • Microscope, optical magnification
  • NMR spectrometer, chemical compound identification, medical diagnostic imaging
  • Ohmmeter, electrical resistance/impedance
  • Optical tweezers, nanoscale manipulation
  • Oscilloscope, electric signal voltage, amplitude, wavelength, frequency, waveform shape/pattern
  • Seismometer, acceleration
  • Spectrogram, sound frequency, wavelength, amplitude
  • Spectrometer, light frequency, wavelength, amplitude
  • Telescope, light magnification (astronomy)
  • Thermometer, temperature measurement
  • Theodolite, angles, surveying
  • Thermocouple, temperature
  • Voltmeter, voltage
  • List of scientific instruments manufacturers[edit]

  • ADInstruments, New Zealand
  • Agilent Technologies, United States of America
  • Anton Paar, Austria
  • A. Reyrolle & Company
  • Beckman Coulter, United States of America
  • Bruker, United States of America
  • Cambridge Scientific Instrument Company, United Kingdom
  • Elementar, Germany
  • First Light Imaging, France
  • Horiba, Japan
  • JEOL, Japan
  • LECO Corporation, United States of America
  • Markes International, United Kingdom
  • Malvern Instruments, United Kingdom
  • McPherson Inc, United States of America
  • Mettler Toledo, Switzerland / United States of America
  • MTS Systems Corporation, US, mechanical
  • Novacam Technologies, Canada
  • Oxford Instruments, United Kingdom
  • Pall Corp., United States of America
  • PerkinElmer, United States of America
  • Polymer Char, Spain
  • Shimadzu Corp., Japan
  • Techtron, Melbourne, Australia
  • Thermo Fisher Scientific, United States of America
  • Waters Corporation, United States of America
  • List of scientific instruments designers[edit]

    History of scientific instruments[edit]

    Museums[edit]

    Historiography[edit]

    Types of scientific instruments[edit]

    See also[edit]

    References[edit]

    1. ^ a b c Hessenbruch, Arne (2013). Reader's Guide to the History of Science. Taylor & Francis. pp. 675–77. ISBN 9781134263011.
  • ^ Warner, Deborah Jean (March 1990). "What Is a Scientific Instrument, When Did It Become One, and Why?". The British Journal for the History of Science. 23 (1): 83–93. doi:10.1017/S0007087400044460. JSTOR 4026803. S2CID 145517920.
  • ^ a b "United States v. Presbyterian Hospital". The Federal Reporter. 71: 866–868. 1896.
  • ^ Turner, A.J. (1987). Early Scientific Instruments: Europe, 1400-1800. Phillip Wilson Publishers.
  • ^ Bedini, S.A. (1964). Early American Scientific Instruments and Their Makers. Smithsonian Institution. Retrieved 18 January 2017.
  • ^ Geerdt Magiels (2009) From Sunlight to Insight. Jan IngenHousz, the discovery of photosynthesis & science in the light of ecology, page 231, VUB Press ISBN 978-90-5487-645-8
  • ^ Mukhopadhyay, R. (2008). "The Rise of Instruments during World War II". Analytical Chemistry. 80 (15): 5684–5691. doi:10.1021/ac801205u. PMID 18671339.
  • ^ McMahon, G. (2007). Analytical Instrumentation: A Guide to Laboratory, Portable and Miniaturized Instruments. John Wiley & Sons. pp. 1–6. ISBN 9780470518557.
  • ^ Khandpur, R.S. (2016). Handbook of Analytical Instruments. McGraw Hill Education. ISBN 9789339221362.
  • ^ Shadab,K.A. (2017). "KAS PERIODIC TABLE". International Research Journal of Natural and Applied Sciences. 4 (7): 221–261.
  • ^ Osiander, R. (2016). Darrin, M.A.G.; Barth, J.L. (eds.). Systems Engineering for Microscale and Nanoscale Technologies. CRC Press. pp. 137–172. ISBN 9781439837351.
  • ^ James, W.S.; Lemole Jr, G.M. (2015). Latifi, R.; Rhee, P.; Gruessner, R.W.G. (eds.). Technological Advances in Surgery, Trauma and Critical Care. Springer. pp. 221–230. ISBN 9781493926718.
  • ^ Wilkes, R.; Megargle, R. (1994). "Integration of instruments and a laboratory information management system at the information level: An inductively coupled plasma spectrometer". Chemometrics and Intelligent Laboratory Systems. 26 (1): 47–54. doi:10.1016/0169-7439(94)90018-3.
  • ^ Carvalho, M.C. (2013). "Integration of Analytical Instruments with Computer Scripting". Journal of Laboratory Automation. 18 (4): 328–33. doi:10.1177/2211068213476288. PMID 23413273.
  • ^ Perkel, J.M. (2017). "The Internet of Things comes to the lab". Nature. 542 (7639): 125–126. Bibcode:2017Natur.542..125P. doi:10.1038/542125a. PMID 28150787.
  • ^ Charlotte Bigg & Christoph Meinel (eds.), Paul Bunge Prize: History of Scientific Instruments, 1993-2023 (Frankfurt/Main: GDCh & DBG, 2023), 96 pp.
  • icon Medicine
  • icon Museums
  • icon Physics
  • Astronomy
  • icon Stars
  • icon Society
  • icon Science

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Scientific_instrument&oldid=1223693777"

    Categories: 
    Scientific instruments
    Science-related lists
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles with BNE identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with LNB identifiers
    Articles with NKC identifiers
     



    This page was last edited on 13 May 2024, at 19:17 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki