Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Occurrence  





2 Functions  





3 Activities  





4 Overview  





5 References  














Solanesol







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Solanesol
Names
Preferred IUPAC name

(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-Nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-ol

Identifiers

CAS Number

3D model (JSmol)

ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.116.588 Edit this at Wikidata
EC Number
  • 603-532-7

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C45H74O/c1-37(2)19-11-20-38(3)21-12-22-39(4)23-13-24-40(5)25-14-26-41(6)27-15-28-42(7)29-16-30-43(8)31-17-32-44(9)33-18-34-45(10)35-36-46/h19,21,23,25,27,29,31,33,35,46H,11-18,20,22,24,26,28,30,32,34,36H2,1-10H3/b38-21+,39-23+,40-25+,41-27+,42-29+,43-31+,44-33+,45-35+

    Key: AFPLNGZPBSKHHQ-MEGGAXOGSA-N

  • CC(=CCC/C(=C/CC/C(=C/CC/C(=C/CC/C(=C/CC/C(=C/CC/C(=C/CC/C(=C/CC/C(=C/CO)/C)/C)/C)/C)/C)/C)/C)/C)C

Properties

Chemical formula

C45H74O
Molar mass 631.086 g·mol−1
Appearance white or colorless wax
Melting point 33–35 °C (91–95 °F; 306–308 K)

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Solanesol is the organic compound with the formula Me2C=CHCH2(CH2C(Me)=CHCH2)8OH. It is an all trans stereoisomer.[1] This white, waxy solid is classified as an nonaisoprenoid.[2] Solanesol is a non-cyclic terpene alcohol that consists of nine isoprene units and mainly accumulates in solanaceous plants such as tobacco, potato, and tomato.[3] It is extractable from the stems and leaves of solanaceous species.[2] It is notable as the biosynthetic precursor to coenzyme Q10.[2]

Occurrence[edit]

Solanesol is a non-cyclic terpene alcohol that consists of nine isoprene units and mainly accumulates in solanaceous plants such as tobacco, potato, and tomato.[3] It is also accumulates in eggplant and pepper plants.[2] It is notable as the biosynthetic precursor to coenzyme Q10.[2] The leaf tobacco contains the tobacco-specific compound solanesol.[4] It is found in tobacco smoke[4] and in the emissions of heat-not-burn tobacco products.[5] Tobacco has the highest solanesol content amongst all solanaceous plants.[3] It is extractable from tobacco waste.[6]

Functions[edit]

Solanesol is a secondary metabolite.[3] Various plants produce numerous highly-specific terpenoids that play important roles in plant–environment interactions.[3] In tobacco, solanesol might participate in the immune response towards pathogens: in a 2017 study by Bajda et al., the solanesol content in resistant tobacco varieties increased by more than 7 times one week after infection by the tobacco mosaic virus (TMV), while it did not increase significantly after infection in susceptible varieties.[3] In potato, as compared to normal temperatures (22 °C during the day, 16 °C at night), moderately high temperatures (30 °C during the day, 20 °C at night) caused a more than six-fold increase in the solanesol content after one week, indicating that solanesol might play an important role in the response of potato to moderately high temperatures.[3] Hence, solanesol plays important roles in the interactions of solanaceous plants with environmental factors.[3]

Activities[edit]

Solanesol possesses antimicrobial, anti-tumor, anti-inflammatory, and anti-ulcer activities, and it serves as an important pharmaceutical intermediate for the synthesis of coenzyme Q10, vitamin K2, and N-solanesyl-N,N′-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB).[3] The physiological functions of coenzyme Q10 include anti-oxidation, anti-aging, immune-function enhancement, cardiovascular enhancement, brain-function enhancement, and the regulation of blood lipids; it may be used for treating migraines, neurodegenerative diseases, hypertension, and cardiovascular diseases, and as a dietary supplement for patients with type 2 diabetes.[3] Vitamin K2 promotes bone growth, inhibits bone resorption, stimulates bone mineralization, has preventive and therapeutic effects on osteoporosis, diminishes blood clotting, and reduces the progression of arteriosclerosis.[3] The anti-cancer agent synergizer SDB allows P-glycoprotein-mediated multidrug resistance in cancer cells to be overcome, and has synergistic effects with certain anti-tumor drugs.[3] Recently as of 2017, it was found that solanesol induces the expression of HO-1 and Hsp70, which in turn alleviates alcohol-induced liver cell damage.[3] Additionally, it inhibits the generation of inflammatory cytokines through the p38 and Akt signalling pathways, implying an anti-inflammatory effect.[3] Therefore, solanesol and its derivatives are highly valuable from a pharmaceutical perspective.[3]

Overview[edit]

Solanesol is a non-cyclic terpene alcohol that consists of nine isoprene units.[3] Solanesol serves an important role in the interactions between plants and their environment, and it is a key intermediate for the pharmaceutical synthesis of ubiquinone-based supplements and drugs.[3] Notably, although solanesol and its derivatives are highly valuable from a pharmaceutical perspective, solanesol as a C45 compound may act as a tumorigenic precursor in tobacco smoke.[3] While in recent years as of 2017, studies on the identification of key enzymatic genes in solanesol biosynthesis and gene function have achieved significant progress, a number of questions on the regulatory mechanisms of solanesol synthesis remain unanswered.[3] Genome sequencing of solanaceous plants such as tobacco, potato, and tomato has paved the way for deeper studies on the metabolic regulation of solanesol biosynthesis.[3]

Transcriptomics and metabolomics studies may aid in resolving the metabolic flux distribution of solanesol and the mechanisms through which it interacts with other metabolic pathways.[3] The creation of NtSPS1-overexpressing tobacco plants has been accomplished in a laboratory setting, which makes it possible to evaluate the effects of SPS1 overexpression on solanesol and related metabolites, photosynthesis, and the expression levels of key solanesol biosynthetic and related genes in tobacco.[3] Moreover, overexpression of key enzymatic genes will allow tobacco plants with high solanesol content to be obtained, with significant importance for medical applications.[3] Microbial heterologous expression of key tobacco enzymatic genes may be used to identify their function and to generate solanesol derivatives of medicinal value.[3]

References[edit]

  1. ^ "solanesol (CHEBI:26718)". www.ebi.ac.uk.
  • ^ a b c d e Ning Yan, Yanhua Liu, Daping Gong, Yongmei Du, Huaibao Zhang, Zhongfeng Zhang (2015). "Solanesol: a review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis". Phytochemistry Reviews. 14 (3): 403–417. Bibcode:2015PChRv..14..403Y. doi:10.1007/s11101-015-9393-5. S2CID 12078203.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ a b c d e f g h i j k l m n o p q r s t u v w x Yan, Ning; Liu, Yanhua; Zhang, Hongbo; Du, Yongmei; Liu, Xinmin; Zhang, Zhongfeng (2017). "Solanesol Biosynthesis in Plants". Molecules. 22 (4): 510. doi:10.3390/molecules22040510. ISSN 1420-3049. PMC 6154334. PMID 28333111. This article incorporates text by Ning Yan, Yanhua Liu, Hongbo Zhang, Yongmei Du, Xinmin Liu and Zhongfeng Zhang available under the CC BY 4.0 license.
  • ^ a b Pauly, J. L.; O'Connor, R. J.; Paszkiewicz, G. M.; Cummings, K. M.; Djordjevic, M. V.; Shields, P. G. (2009). "Cigarette Filter-based Assays as Proxies for Toxicant Exposure and Smoking Behavior--A Literature Review". Cancer Epidemiology, Biomarkers & Prevention. 18 (12): 3321–3333. doi:10.1158/1055-9965.EPI-09-0925. ISSN 1055-9965. PMC 2796549. PMID 19959679.
  • ^ Kaunelienė, Violeta; Meišutovič-Akhtarieva, Marija; Martuzevičius, Dainius (2018). "A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources". Chemosphere. 206: 568–578. Bibcode:2018Chmsp.206..568K. doi:10.1016/j.chemosphere.2018.05.039. ISSN 0045-6535. PMID 29778082.
  • ^ Taylor, Mark A.; Fraser, Paul D. (2011). "Solanesol: Added value from Solanaceous waste". Phytochemistry. 72 (11–12): 1323–1327. Bibcode:2011PChem..72.1323T. doi:10.1016/j.phytochem.2011.03.015. ISSN 0031-9422. PMID 21459392.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Solanesol&oldid=1183223901"

    Categories: 
    Terpenes and terpenoids
    Primary alcohols
    Hidden categories: 
    CS1 maint: multiple names: authors list
    Articles with imported Creative Commons Attribution 4.0 text
    Articles without InChI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 2 November 2023, at 23:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki