Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Symptoms and signs  





2 Causes  





3 Mechanism  



3.1  Mosaicism  







4 Diagnosis  





5 Management  





6 Prognosis  



6.1  Recurrence risk  







7 See also  





8 References  





9 External links  














Tetrasomy 9p






Bosanski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Tetrasomy 9p
Other namesIsochromosome 9p
Chromosome 9, the chromosome involved in this condition

Tetrasomy 9p (also known tetrasomy 9p syndrome) is a rare chromosomal disorder characterized by the presence of two extra copies of the short arm of chromosome 9 (called the p arm), in addition to the usual two.[1] Symptoms of tetrasomy 9p vary widely among affected individuals but typically include varying degrees of delayed growth, abnormal facial features and intellectual disability.[1] Symptoms of the disorder are comparable to those of trisomy 9p.[2]

Symptoms and signs

[edit]

The symptoms and prognosis of tetrasomy 9p are highly variable.[3] The severity of the symptoms is largely determined by the size of the isochromosome, the specific regions of chromosome 9p that are duplicated, as well as the number and type of tissues that are affected in the mosaic form.[4]

Most patients exhibit some degree of intellectual disability, abnormal skeletal and muscular development, and abnormal facial structures.[1] Cognitive symptoms range from slight learning disabilities to severe deficits in intellectual functioning.[4] Due to abnormal development of the muscles, individuals often experience limited or delayed mobility.[2] Atypical facial features are characteristic of the syndrome, including widely spaced eyes, a large nose, and unusually positioned ears.[1][4] Additionally, patients often have extra skin around the neck and widely spaced nipples.[4] A wide range of renal, digestive, cardiac, respiratory, and nervous system abnormalities have been observed.[4]

Though rare, a few cases of phenotypically normal individuals with tetrasomy 9p have been documented.[1][3]

Causes

[edit]

Tetrasomy 9p is caused by the presence of two additional copies of the short arm of chromosome 9. These two extra copies are found in the cell as an isochromosome, in addition to the normal 46 chromosomes.[4] An isochromosome is formed when one of the arms of a chromosome is duplicated (in this case, the short arm), and the other is lost (in this case, the long arm), forming a chromosome with two identical arms.[3] Varying amounts of the short arm may be incorporated into the isochromosome, and occasionally, small regions of DNA from the long arm are included as well.[4] This extra isochromosome is classified as a small supernumerary marker chromosome.[5]

The disorder is almost never inherited; it most commonly arises through the improper distribution of chromosomes during the formation of eggs or sperm.[1]

Mechanism

[edit]

The tetrasomy is typically caused by the incorrect distribution of chromosomes during meiosisormitosis, called nondisjunction.[4] When cell division occurs normally, each daughter cell receives one short arm and one long arm of each chromosome. However, errors during this process may cause one daughter cell to receive two short arms of chromosome 9, while the other cell receives two long arms. The identical arms are subsequently connected via a centromere. In most cases, isochromosomes of 9p contain two centromeres, called a dicentric chromosome.[4]

The tetrasomy can also be formed independently of cell division. Double stranded breaks in the short arm of chromosome 9 may be repaired incorrectly, resulting in the formation of an isochromosome of 9p with a single centromere.[4] This isochromosome can then be passed on during cell division.[citation needed]

Mosaicism

[edit]

In most cases, affected individuals carry the tetrasomy in every cell in their bodies.[2] However, some people have the tetrasomy in some of their tissues but not in others; this is referred to as the mosaic form of the syndrome, and often results in less severe symptoms.[2] Non-mosaic tetrasomy 9p is most often the result of abnormal chromosome separation during the formation of eggs or sperm. In contrast, the mosaic form is often a result of a nondisjunction event that occurs early in embryonic development.[2] The type and number of tissues affected in the mosaic form is dependent upon the timing and location of the abnormal division within the developing embryo.[citation needed]

Diagnosis

[edit]

After birth, galactose-1-phosphate uridyltransferase (GALT) activity in the infant's blood is measured.[2] GALT is regulated by a protein encoded on chromosome 9p, so irregular levels of GALT activity may indicate an underlying chromosomal abnormality.[2] Abnormal results are followed by analysis of blood, skin, and inner cheek cells, typically via fluorescence in situ hybridization,[4] which allows genetic counsellors to physically view the chromosomal composition of the cells.[6] Analysis of more than one tissue type is necessary in order to determine if the tetrasomy is present in its mosaic form.[1] If tetrasomy 9p is confirmed, chromosomal analysis of additional tissue types may be performed in order to estimate the ratio of affected cells in the body.[3]

Management

[edit]

Prognosis

[edit]

Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form.[3] Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy.[1] Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting.[1] Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.[1]

Recurrence risk

[edit]

Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal.[4] While patients often do not survive to reproductive age, those who do may or may not be fertile.[1] The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.[1]

See also

[edit]

References

[edit]
  1. ^ a b c d e f g h i j k l "Tetrasomy 9p" (PDF). rarechromo.org. Unique: Rare Chromosome Disorder Support Group. Retrieved November 29, 2015.
  • ^ a b c d e f g "Chromosome 9, Tetrasomy 9p". National Organization for Rare Disorders. Retrieved 2015-11-29.
  • ^ a b c d e Lazebnik, Noam; Cohen, Leslie (2015-07-01). "Prenatal diagnosis and findings of tetrasomy 9p". Journal of Obstetrics and Gynaecology Research. 41 (7): 997–1002. doi:10.1111/jog.12706. ISSN 1447-0756. PMID 25944096. S2CID 5507599.
  • ^ a b c d e f g h i j k l "Tetrasomy 9p Syndrome". Atlas of Genetic Diagnosis and Counseling. Humana Press. 2006-01-01. pp. 947–949. doi:10.1007/978-1-60327-161-5_179. ISBN 978-1-58829-681-8.
  • ^ Jafari-Ghahfarokhi H, Moradi-Chaleshtori M, Liehr T, Hashemzadeh-Chaleshtori M, Teimori H, Ghasemi-Dehkordi P (2015). "Small supernumerary marker chromosomes and their correlation with specific syndromes". Advanced Biomedical Research. 4 (1): 140. doi:10.4103/2277-9175.161542. PMC 4544121. PMID 26322288.
  • ^ Grass, Frank S.; Parke, James C.; Kirkman, Henry N.; Christensen, Vicky; Roddey, O. F.; Wade, Ronald V.; Knuston, Cam; Spence, J. Edward (1993-11-01). "Tetrasomy 9p: Tissue-limited idic(9p) in a child with mild manifestations and a normal CVS result. Report and review". American Journal of Medical Genetics. 47 (6): 812–816. doi:10.1002/ajmg.1320470603. ISSN 1096-8628. PMID 7506483.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tetrasomy_9p&oldid=1187414298"

    Category: 
    Genetic disorders with no OMIM
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from September 2021
    Articles to be expanded from December 2017
    All articles to be expanded
    Articles with empty sections from December 2017
    All articles with empty sections
    Articles using small message boxes
     



    This page was last edited on 29 November 2023, at 02:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki