Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 19th century  



1.1  1820s  





1.2  1830s  





1.3  1840s  





1.4  1850s  





1.5  1880s  





1.6  1890s  







2 20th century  



2.1  1900s  





2.2  1910s  





2.3  1920s  





2.4  1930s  





2.5  1940s  





2.6  1950s  





2.7  1960s  





2.8  1970s  





2.9  1980s  





2.10  1990s  







3 21st century  



3.1  2000s  





3.2  2010s  





3.3  2020s  







4 See also  





5 References  



5.1  Bibliography  







6 External links  














Timeline of CretaceousPaleogene extinction event research







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Artist's depiction of the end-Cretaceous impact event

Since the 19th century, a significant amount of research has been conducted on the Cretaceous–Paleogene extinction event, the mass extinction that ended the dinosaur-dominated Mesozoic Era and set the stage for the Age of Mammals, or Cenozoic Era. A chronology of this research is presented here.

Paleontologists have recognized since at least the 1820s that a significant transition occurred between the Mesozoic and Cenozoic eras.[1] Around this time dinosaur fossils were first being described in the scientific literature. Nevertheless, so few dinosaurs were known that the significance of their passing went unrecognized and little scientific effort was exerted toward finding an explanation.[2] As more and more different kinds of dinosaurs were discovered, their extinction and replacement by mammals was recognized as significant but dismissed with little examination as a natural consequence of the mammals' supposed innate superiority.[3] Consequently, paleontologist Michael J. Benton has called the years up to 1920 as the "Nonquestion Phase" of Cretaceous–Paleogene extinction research.[4]

Ideas that evolution might proceed along pre-ordained patterns or that evolutionary lineages might age, deteriorate, and die like individual animals became popular starting in the late 19th century, but were superseded by the Neo-Darwinian synthesis.[5] The aftermath of this transition brought renewed interest to the extinction at the end of the Cretaceous.[6] Paleontologists began dabbling in the subject, proposing environmental changes during the Cretaceous like mountain-building, dropping temperaturesorvolcanic eruptions as explanation for the extinction of the dinosaurs.[7] Nevertheless, much of the research occurring during this period lacked rigor, evidential support or depended on tenuous assumptions.[8] Michael J. Benton called the years between 1920 and 1970 the "Dilettante Phase" of Cretaceous–Paleogene extinction research.[4]

In 1970, paleontologists began studying the Cretaceous–Paleogene extinction in a detailed, rigorous way.[9] Benton considered this to be the beginning of the "Professional Phase" of Cretaceous–Paleogene extinction research. Early in this phase, the pace of the extinctions and the potential role of the Deccan Traps volcanism in India were major subjects of interest.[10]In1980, father and son duo Luis and Walter Alvarez reported anomalously high levels of the platinum group metal iridium from the K–Pg boundary, but because iridium is rare in Earth's crust they argued that an asteroid impact was needed to account for it. This suggestion set off a bitter controversy. Evidence for an impact continued to mount, like the discovery of shocked quartz at the K–Pg boundary. In 1991, Alan Hildebrand and William Boynton reported the Chicxulub crater in the Yucatan peninsula of Mexico as a probable impact site. While the controversy continued, the accumulating evidence gradually began to sway the scientific community toward the Alvarez hypothesis. In 2010, an international panel of researchers concluded that impact best explained the extinction event and that Chicxulub was indeed the resulting crater.[11] Because the estimated date of the object's impact and the Cretaceous–Paleogene boundary (K–Pg boundary) coincide, there is now a scientific consensus that this impact was the Cretaceous–Paleogene extinction event which caused the death of most of the planet's non-avian dinosaurs and many other species.[12][13] The impactor's crater is just over 177 kilometers in diameter,[14] making it the second largest known impact crater on Earth.

19th century[edit]

Portrait of Georges Cuvier, who recognized the vast difference in the faunas of the Mesozoic and Cenozoic eras

1820s[edit]

1825

1830s[edit]

1831

1840s[edit]

1842

1850s[edit]

Othniel Charles Marsh interpreted the extinction of the dinosaurs as a gradual process

1854

1880s[edit]

1882

1890s[edit]

1898

20th century[edit]

An early 20th century restoration of StegosaurusbyCharles R. Knight

1900s[edit]

1905

1910s[edit]

The enlarged pituitary of a human with acromegaly

1910

1917

1920s[edit]

1921

Deforming arthrides in dinosaur vertebrae

1922

1923

1925

1928

1929

1930s[edit]

The brainsofTriceratops and Edmontosaurus

1939

1940s[edit]

1942

1945

1946

1949

1950s[edit]

Asolar flare

1950s

1954

1956

1960s[edit]

A swarm of caterpillars denuding a plant of vegetation

1960s

1962

1967

1968

1970s[edit]

APemex gas stationinMexico

1970s

1970

1971

A map showing the location of the large igneous provinces of the world. The Deccan Traps are represented by the purple region in India

1972

1973

1974

1976

A panorama of Gubbio, Italy

1977

Deccan Traps volcanism was hypothesized to have been a main causative factor in the Cretaceous–Paleogene mass extinction

1978

Fragments of iridium

1979

1980s[edit]

Walter Alvarez in 2012

1980

The spore-bearing structures of a modern fern

1981

1982

ABrazilian foraminiferan microfossil dating to shortly after the end of the Cretaceous
A sample of the iridium-rich Cretaceous–Tertiary boundary from Wyoming

1983

The Snowbird Ski Resort, site of the contentious Cretaceous–Paleogene extinction event conferences

1984

A modern wildfire

1985

A sedimentary rock showing signs of bioturbation
Anammonoid

1986

The resonance structures of nitric acid

1987

1988

Luis Alvarez
Patterns of temperature-dependent sex-determinationinreptiles

1989

1990s[edit]

The gravitational anomalies signaling the presence of the Chicxulub Crater

1990

Location of the Chicxulub Crater on the Yucatan Peninsula of Mexico

1991

Chemical structure of sulfuric acid

1992

Map of New Zealand

1993

The Western Interior Seaway of North America 95 million years ago

1994

1995

1996

A fossil Inoceramus shell
Sea level over time during the Phanerozoic eon

1997

Artistic restorations of various members of the end-Cretaceous Hell Creek paleofauna

1998

1999

21st century[edit]

2000s[edit]

A modern member of the shark genus Chiloscyllium, which survived the Cretaceous–Paleogene extinction event

2000

2001

2002

2010s[edit]

2010

2013

2016

2019

2020s[edit]

2020

2021

2022

Conceptual model of the impact sequence at the Nadir impact site, based on seismic observations and analog models[162]

See also[edit]

References[edit]

  1. ^ a b c Benton (1990); "Early 19th Century Views of Extinction", page 373.
  • ^ Benton (1990); "Early 19th Century Views of Extinction", page 372.
  • ^ a b Benton (1990); "Post-Darwinian Interpretations", page 376.
  • ^ a b Benton (1990); "Introduction", page 371.
  • ^ For information on orthogenesis and its role in the history of Cretaceous–Paleogene extinction event research, see Benton (1990); "Post-Darwinian Interpretations", page 376. For the impact of the rise of neodarwinism, see Benton (1990); "Racial Senility", page 379.
  • ^ a b Benton (1990); "Racial Senility", page 379.
  • ^ a b c d e f g h Benton (1990); "Biotic and Physical Factors", page 380.
  • ^ Benton (1990); "Problems with the 'Dilettante' Approach", pages 385–386.
  • ^ Benton (1990); "Background", pages 386–387.
  • ^ For the relevance of the pace of the extinction to early "Professional Phase" Cretaceous–Paleogene extinction research, see Benton (1990); "Introduction", page 371. For the proposal of the Deccan Traps as a putative extinction mechanism, see Powell (1998); "The Volcanic Rival", page 85.
  • ^ a b Schulte et al. (2010); in passim.
  • ^ "International Consensus — Link Between Asteroid Impact and Mass Extinction Is Rock Solid". www.lpi.usra.edu. Archived from the original on 2015-09-05. Retrieved 2015-10-28.
  • ^ Schulte, Peter (March 5, 2010). "The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous–Paleogene Boundary" (PDF). Science. 327 (5970): 1214–8. Bibcode:2010Sci...327.1214S. doi:10.1126/science.1177265. PMID 20203042. S2CID 2659741. Archived from the original (PDF) on June 25, 2015. Retrieved 2015-06-25.
  • ^ Amos, Jonathan (May 15, 2017). "Dino asteroid hit 'worst possible place'". BBC News. Archived from the original on March 18, 2018. Retrieved June 22, 2018.
  • ^ Benton (1990); "The Dinosauria", page 375.
  • ^ Powell (1998); "Return of the Pterodactyl", page 127.
  • ^ Benton (1990); "Post-Darwinian Interpretations", pages 376–377.
  • ^ a b For Woodward's speech, see Benton (1990); "Racial Senility", page 379. For a definition and discussion of racial senility, see "Post-Darwinian Interpretations", page 376.
  • ^ a b c d e Benton (1990); "I. Biotic causes", page 382.
  • ^ Carpenter (1999); "Reason 6. Killer Dinosaurs", page 257.
  • ^ a b c d e f g h i Benton (1990); "II. Abiotic (physical) causes", page 384.
  • ^ Benton (1990); "Biotic and Physical Factors", pages 380–381.
  • ^ a b c d e f g Benton (1990); "II. Abiotic (physical) causes", page 383.
  • ^ a b c d e f Powell (1998); "The Red Devil", page 103.
  • ^ a b c d e Benton (1990); "II. Abiotic (physical) causes", page 385.
  • ^ a b Powell (1998); "The Volcanic Rival", page 85.
  • ^ Powell (1998); "Stones from the Sky", page 36.
  • ^ a b Powell (1998); "Losing by a Nose", page 19.
  • ^ Benton (1990); "I. Biotic causes", page 383.
  • ^ Powell (1998); "The Son in Italy", page 10.
  • ^ Carpenter (1999); "Reason 4. Carbon Dioxide/Oxygen Imbalance", page 255.
  • ^ Carpenter (1999); "Reason 4. Carbon Dioxide/Oxygen Imbalance", pages 255–256.
  • ^ Magazine, Smithsonian; Jablow, Valerie. "A Tale of Two Rocks". Smithsonian Magazine. Archived from the original on 2022-10-19. Retrieved 2022-10-19.
  • ^ Carpenter (1999); "Reason 3. Eggshell Too Thin, Eggshell Too Thick", pages 253–254.
  • ^ Carpenter (1999); "Reason 3. Eggshell Too Thin, Eggshell Too Thick", page 254.
  • ^ Carpenter (1999); "Reason 3. Eggshell Too Thin, Eggshell Too Thick", pages 254–255.
  • ^ Powell (1998); "The Greatest Mystery", page xvi.
  • ^ a b c d Powell (1998); "Losing by a Nose", page 20.
  • ^ a b c d e f g Archibald and Fastovsky (2004); "Asteroid Impact", page 674.
  • ^ Powell (1998); "Iridium", page 16.
  • ^ a b c d Archibald and Fastovsky (2004); "The Plant Record", page 682.
  • ^ Powell (1998); "Prediction 1: Impact effects will be seen worldwide at the K–T boundary.", page 58.
  • ^ a b Powell (1998); "Plants", page 150.
  • ^ Carpenter (1999); "Reason 3. Eggshell Too Thin, Eggshell Too Thick", page 255.
  • ^ a b c Powell (1998); "Alvarez Predictions", page 57.
  • ^ a b c Powell (1998); "Prediction 1: Impact effects will be seen worldwide at the K–T boundary.", page 57.
  • ^ a b Powell (1998); "Prediction 7: Unanticipated discoveries will be made.", page 63.
  • ^ a b c Powell (1998); "Iridium Hills", page 75.
  • ^ a b c d Powell (1998); "Mysterious Spherules", page 82.
  • ^ a b Powell (1998); "The Red Devil", pages 102–103.
  • ^ Powell (1998); "Ammonites", page 146.
  • ^ Powell (1998); "Plants", page 149.
  • ^ a b c Archibald and Fastovsky (2004); "Tempo of Vertebrate Turnover at the K/T Boundary", page 679.
  • ^ Powell (1998); "Sampling Effects", page 135.
  • ^ Powell (1998); "Sampling Effects", pages 135–136.
  • ^ a b c d e f Archibald and Fastovsky (2004); "Corollaries of Asteroid Impact", page 681.
  • ^ a b c d e f g Archibald and Fastovsky (2004); "The Marine Record", page 682.
  • ^ Powell (1998); "Sampling Effects", page 136.
  • ^ Powell (1998); "The Death of the Dinosaurs", page 160.
  • ^ a b Powell (1998); "Acrimony", page 162.
  • ^ a b Powell (1998); "Acrimony", page 160.
  • ^ a b Powell (1998); "Foraminifera", page 152.
  • ^ a b c d Archibald and Fastovsky (2004); "Corollaries of Asteroid Impact", page 680.
  • ^ a b Powell (1998); "Counterattack", page 67.
  • ^ Powell (1998); "Preemptive Strike", page 71.
  • ^ Powell (1998); "Are All Mass Extinctions Caused by Collision?", page 183.
  • ^ Powell (1998); "Prediction 5: The K–T boundary clays will contain shock metamorphic effects.", page 60.
  • ^ Powell (1998); "Prediction 5: The K–T boundary clays will contain shock metamorphic effects.", pages 60–61.
  • ^ Powell (1998); "Preemptive Strike", pages 71–74.
  • ^ Powell (1998); "Preemptive Strike", page 72.
  • ^ Powell (1998); "Preemptive Strike", page 73.
  • ^ a b Powell (1998); "Career Damage", page 94.
  • ^ Powell (1998); "Clues", page 98.
  • ^ Powell (1998); "Acrimony", pages 162–163.
  • ^ Powell (1998); "To Hell Creek and Back", page 171.
  • ^ Powell (1998); "Prediction 7: Unanticipated discoveries will be made.", pages 62–63.
  • ^ Powell (1998); "Iridium Hills", pages 75–76.
  • ^ Powell (1998); "Shocked Minerals", pages 78–79.
  • ^ a b c d Powell (1998); "Volcanic Iridium", page 86.
  • ^ Powell (1998); "Iridium Hills", page 76.
  • ^ a b c Powell (1998); "Shocked Minerals", page 80.
  • ^ a b c d Powell (1998); "Ejecta Deposits", page 111.
  • ^ Powell (1998); "Prediction 2: Elsewhere in the geologic column, iridium and other markers of impact will be uncommon.", pages 58–59.
  • ^ Powell (1998); "Foraminifera", page 155.
  • ^ Powell (1998); "Topography", pages 106–107.
  • ^ a b c Powell (1998); "Topography", page 107.
  • ^ Powell (1998); "Acrimony", page 165.
  • ^ Powell (1998); "Ammonites", page 147.
  • ^ a b Powell (1998); "Foraminifera", pages 152–153.
  • ^ Carpenter (1999); "Reason 1. Too Many Males— Too Many Females", page 248.
  • ^ Powell (1998); "Prediction 3: Iridium anomalies will be associated with proven meteorite impact craters.", page 59.
  • ^ a b Powell (1998); "The Red Devil", page 102.
  • ^ Archibald and Fastovsky (2004); "Volcanism", page 673.
  • ^ a b Archibald and Fastovsky (2004); "Dinosaur Diversity during the Last Ten Million Years of the Cretaceous", page 677.
  • ^ Powell (1998); "An Exercise in Newspeak", page 34.
  • ^ Powell (1998); "Iridium Hills", page 77.
  • ^ Powell (1998); "Sampling Effects", page 138.
  • ^ Powell (1998); "Triumph of the Volunteers", pages 173–174.
  • ^ Powell (1998); "Prediction 7: Unanticipated discoveries will be made.", page 64.
  • ^ a b Powell (1998); "Age", page 109.
  • ^ a b Archibald and Fastovsky (2004); "Geologic Events at or Near the K/T Boundary", page 672.
  • ^ a b Archibald and Fastovsky (2004); "Global Marine Regression", page 673.
  • ^ a b Powell (1998); "Survival Across the K–T Boundary at Hell Creek", page 172.
  • ^ Archibald and Fastovsky (2004); "Pattern of Vertebrate Turnover at the K/T Boundary", page 679.
  • ^ Powell (1998); "Career Damage", page 93.
  • ^ Powell (1998); "Career Damage", pages 93–94.
  • ^ Powell (1998); "Manson", page 100.
  • ^ Powell (1998); "Geochemistry", page 110.
  • ^ a b Powell (1998); "Ejecta Deposits", page 112.
  • ^ Powell (1998); "The Zircon Fingerprint", page 118.
  • ^ Powell (1998); "The Zircon Fingerprint", page 119.
  • ^ Powell (1998); "The Zircon Fingerprint", pages 116–119.
  • ^ Powell (1998); "Ejecta Deposits", pages 112–113.
  • ^ Powell (1998); "Prediction 7: Unanticipated discoveries will be made.", pages 63–64.
  • ^ Powell (1998); "Indian Iridium", pages 91–92.
  • ^ Powell (1998); "Indian Iridium", page 92.
  • ^ Powell (1998); "Theories of Dinosaur Extinction", page 168.
  • ^ Archibald and Fastovsky (2004); "Corollaries of Marine Regression", pages 679–680.
  • ^ Archibald and Fastovsky (2004); "The Marine Record", page 682. See also Powell (1998); "Ammonites", page 148.
  • ^ Powell (1998); "Iridium Hills", page 78.
  • ^ Powell (1998); "Volcanic Iridium", pages 86–87.
  • ^ Powell (1998); "Size and Shape", pages 105–106.
  • ^ Powell (1998); "Size and Shape", page 106.
  • ^ Powell (1998); "Predictions Met", page 113.
  • ^ Powell (1998); "Foraminifera", pages 154–155.
  • ^ Archibald and Fastovsky (2004); "Corollaries of Marine Regression", page 680.
  • ^ Powell (1998); "Foraminifera", page 154.
  • ^ Archibald and Fastovsky (2004); "Multiple Causes for the K/T Extinctions", page 683.
  • ^ Powell (1998); "Hell on Earth", page 178.
  • ^ Lockley and Meyer (2000); "The Last European Dinosaurs," page 239.
  • ^ Archibald and Fastovsky (2004); "Pattern of Vertebrate Turnover at the K/T Boundary", page 677.
  • ^ a b Archibald and Fastovsky (2004); "A Single Cause for the K/T Extinctions", page 684.
  • ^ Renne, Paul R.; Deino, Alan L.; Hilgen, Frederik J.; Kuiper, Klaudia F.; Mark, Darren F.; Mitchell, William S.; Morgan, Leah E.; Mundil, Roland; Smit, Jan (7 February 2013). "Time Scales of Critical Events Around the Cretaceous–Paleogene Boundary". Science. 339 (6120): 684–687. Bibcode:2013Sci...339..684R. doi:10.1126/science.1230492. PMID 23393261. S2CID 6112274.
  • ^ "Updated: Drilling of dinosaur-killing impact crater explains buried circular hills". Science | AAAS. May 2, 2016. Archived from the original on June 29, 2022. Retrieved June 30, 2022.
  • ^ Fleur, Nicholas St (November 17, 2016). "Drilling Into the Chicxulub Crater, Ground Zero of the Dinosaur Extinction". The New York Times. Archived from the original on November 9, 2017. Retrieved October 14, 2017.
  • ^ Alfio Alessandro Chiarenza; Philip D. Mannion; Daniel J. Lunt; Alex Farnsworth; Lewis A. Jones; Sarah-Jane Kelland; Peter A. Allison (March 2019). "Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction". Nature Communications. 10 (1): Article number 1091. Bibcode:2019NatCo..10.1091C. doi:10.1038/s41467-019-08997-2. PMC 6403247. PMID 30842410.
  • ^ T. R. Lyson; I. M. Miller; A. D. Bercovici; K. Weissenburger; A. J. Fuentes; W. C. Clyde; J. W. Hagadorn; M. J. Butrim; K. R. Johnson; R. F. Fleming; R. S. Barclay; S. A. Maccracken; B. Lloyd; G. P. Wilson; D. W. Krause; S. G. B. Chester (October 2019). "Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction". Science. 366 (6468): 977–983. doi:10.1126/science.aay2268. PMID 31649141. S2CID 204883579.
  • ^ Joel, Lucas (21 October 2019). "The Dinosaur-Killing Asteroid Acidified the Ocean in a Flash - The Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows". The New York Times. Archived from the original on 24 October 2019. Retrieved 22 October 2019.
  • ^ Henehan, Michael J.; et al. (21 October 2019). "Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 116 (45): 22500–22504. Bibcode:2019PNAS..11622500H. doi:10.1073/pnas.1905989116. PMC 6842625. PMID 31636204.
  • ^ Amanda Morris (11 December 2019). "Earth was stressed before dinosaur extinction". Northwestern University. Archived from the original on 25 December 2019. Retrieved 3 January 2020.
  • ^ Linzmeier, Benjamin J.; Jacobson, Andrew D.; Sageman, Bradley B.; Hurtgen, Matthew T.; Ankney, Meagan E.; Petersen, Sierra V.; Tobin, Thomas S.; Kitch, Gabriella D.; Wang, Jiuyuan (1 January 2020). "Calcium isotope evidence for environmental variability before and across the Cretaceous-Paleogene mass extinction". Geology. 48 (1): 34–38. Bibcode:2020Geo....48...34L. doi:10.1130/G46431.1.
  • ^ a b Joel, Lucas (16 January 2020). "Meteorite or Volcano? New Clues to the Dinosaurs' Demise - Twin calamities marked the end of the Cretaceous period, and scientists are presenting new evidence of which drove one of Earth's great extinctions". The New York Times. Archived from the original on 16 January 2020. Retrieved 17 January 2020.
  • ^ a b Hull, Picncelli M.; et al. (17 January 2020). "On impact and volcanism across the Cretaceous-Paleogene boundary" (PDF). Science. 367 (6475): 266–272. Bibcode:2020Sci...367..266H. doi:10.1126/science.aay5055. hdl:20.500.11820/483a2e77-318f-476a-8fec-33a45fbdc90b. PMID 31949074. S2CID 210698721. Archived (PDF) from the original on 29 July 2020. Retrieved 15 July 2020.
  • ^ "Asteroid impact, not volcanoes, made the Earth uninhabitable for dinosaurs". phys.org. Archived from the original on 8 July 2020. Retrieved 6 July 2020.
  • ^ Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.; Morgan, Joanna V.; Allison, Peter A. (24 June 2020). "Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction". Proceedings of the National Academy of Sciences. 117 (29): 17084–17093. Bibcode:2020PNAS..11717084C. doi:10.1073/pnas.2006087117. ISSN 0027-8424. PMC 7382232. PMID 32601204.
  • ^ Wong, Kate. "How Birds Evolved Their Incredible Diversity". Scientific American. Archived from the original on 3 September 2020. Retrieved 6 September 2020.
  • ^ Felice, Ryan N.; Watanabe, Akinobu; Cuff, Andrew R.; Hanson, Michael; Bhullar, Bhart-Anjan S.; Rayfield, Emily R.; Witmer, Lawrence M.; Norell, Mark A.; Goswami, Anjali (18 August 2020). "Decelerated dinosaur skull evolution with the origin of birds". PLOS Biology. 18 (8): e3000801. doi:10.1371/journal.pbio.3000801. ISSN 1545-7885. PMC 7437466. PMID 32810126.
  • ^ "Dinosaur-dooming asteroid struck Earth at 'deadliest possible' angle". Imperial College London. 26 May 2020. Archived from the original on 27 May 2020. Retrieved 27 May 2020.
  • ^ Collins, G. S.; Patel, N.; Davison, T. M.; Rae, A. S. P.; Morgan, J. V.; Gulick, S. P. S. (26 May 2020). "A steeply-inclined trajectory for the Chicxulub impact". Nature Communications. 11 (1): 1480. Bibcode:2020NatCo..11.1480C. doi:10.1038/s41467-020-15269-x. PMC 7251121. PMID 32457325.
  • ^ Ferreira, Becky (15 February 2021). "Where Did the Dinosaur-Killing Impactor Come From? – A new study blames a comet fragment for the death of the dinosaurs 66 million years ago. But most experts maintain that an asteroid caused this cataclysmic event". The New York Times. Retrieved 15 February 2021.
  • ^ Siraj, Amir (15 February 2021). "Breakup of a long-period comet as the origin of the dinosaur extinction". Scientific Reports. 11 (3803): 3803. arXiv:2102.06785. Bibcode:2021NatSR..11.3803S. doi:10.1038/s41598-021-82320-2. PMC 7884440. PMID 33589634.
  • ^ "Dinosaur-killing asteroid strike gave rise to Amazon rainforest". BBC News. 2 April 2021. Archived from the original on 9 May 2021. Retrieved 9 May 2021.
  • ^ Carvalho, Mónica R.; Jaramillo, Carlos; Parra, Felipe de la; Caballero-Rodríguez, Dayenari; Herrera, Fabiany; Wing, Scott; Turner, Benjamin L.; D’Apolito, Carlos; Romero-Báez, Millerlandy; Narváez, Paula; Martínez, Camila; Gutierrez, Mauricio; Labandeira, Conrad; Bayona, German; Rueda, Milton; Paez-Reyes, Manuel; Cárdenas, Dairon; Duque, Álvaro; Crowley, James L.; Santos, Carlos; Silvestro, Daniele (2 April 2021). "Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests". Science. 372 (6537): 63–68. Bibcode:2021Sci...372...63C. doi:10.1126/science.abf1969. ISSN 0036-8075. PMID 33795451. S2CID 232484243. Retrieved 9 May 2021.
  • ^ "Dinosaur-killing rock traced to population of "dark primitive asteroids"". New Atlas. 29 July 2021. Archived from the original on 14 August 2021. Retrieved 14 August 2021.
  • ^ Nesvorný, David; Bottke, William F.; Marchi, Simone (1 November 2021). "Dark primitive asteroids account for a large share of K/Pg-scale impacts on the Earth". Icarus. 368: 114621. arXiv:2107.03458. Bibcode:2021Icar..36814621N. doi:10.1016/j.icarus.2021.114621. ISSN 0019-1035. S2CID 235765478.
  • ^ "Mammals' bodies outpaced their brains right after the dinosaurs died". Science News. 31 March 2022. Archived from the original on 9 September 2022. Retrieved 14 May 2022.
  • ^ Bertrand, Ornella C.; Shelley, Sarah L.; Williamson, Thomas E.; Wible, John R.; Chester, Stephen G. B.; Flynn, John J.; Holbrook, Luke T.; Lyson, Tyler R.; Meng, Jin; Miller, Ian M.; Püschel, Hans P.; Smith, Thierry; Spaulding, Michelle; Tseng, Z. Jack; Brusatte, Stephen L. (April 2022). "Brawn before brains in placental mammals after the end-Cretaceous extinction". Science. 376 (6588): 80–85. Bibcode:2022Sci...376...80B. doi:10.1126/science.abl5584. hdl:20.500.11820/d7fb8c6e-886e-4c1d-9977-0cd6406fda20. ISSN 0036-8075. PMID 35357913. S2CID 247853831. Archived from the original on 2022-11-17. Retrieved 2022-08-08.
  • ^ "Tanis: 'First dinosaur fossil linked to asteroid strike'". BBC News. 6 April 2022. Archived from the original on 7 April 2022. Retrieved 7 April 2022.
  • ^ Broad, William J.; Chang, Kenneth (29 March 2019). "Fossil Site Reveals Day That Meteor Hit Earth and, Maybe, Wiped Out Dinosaurs". The New York Times. Archived from the original on 7 July 2021. Retrieved 8 August 2022.
  • ^ "66-million-year-old deathbed linked to dinosaur-killing meteor". EurekAlert!. 29 March 2019. Archived from the original on 31 March 2019. Retrieved 1 April 2019.
  • ^ DePalma, Robert A.; Smit, Jan; Burnham, David A.; Kuiper, Klaudia; Manning, Phillip L.; Oleinik, Anton; Larson, Peter; Maurrasse, Florentin J.; Vellekoop, Johan; Richards, Mark A.; Gurche, Loren; Alvarez, Walter (23 April 2019). "A seismically induced onshore surge deposit at the KPg boundary, North Dakota". Proceedings of the National Academy of Sciences. 116 (17): 8190–8199. Bibcode:2019PNAS..116.8190D. doi:10.1073/pnas.1817407116. ISSN 0027-8424. PMC 6486721. PMID 30936306.
  • ^ a b Nicholson, Uisdean; Bray, Veronica J.; Gulick, Sean P. S.; Aduomahor, Benedict (17 August 2022). "The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure". Science Advances. 8 (33): eabn3096. Bibcode:2022SciA....8N3096N. doi:10.1126/sciadv.abn3096. PMC 9385158. PMID 35977017.
  • ^ "Scientists discover a 5-mile wide undersea crater created as the dinosaurs disappeared". CNN. 18 August 2022. Archived from the original on 18 August 2022. Retrieved 18 August 2022.
  • ^ Hunt, Katie (23 September 2022). "Fossil egg analysis in China adds to debate of what may have caused dinosaurs' demise". CNN. Archived from the original on 19 October 2022. Retrieved 19 October 2022.
  • ^ Han, Fei; Wang, Qiang; Wang, Huapei; Zhu, Xufeng; Zhou, Xinying; Wang, Zhixiang; Fang, Kaiyong; Stidham, Thomas A.; Wang, Wei; Wang, Xiaolin; Li, Xiaoqiang; Qin, Huafeng; Fan, Longgang; Wen, Chen; Luo, Jianhong; Pan, Yongxin; Deng, Chenglong (27 September 2022). "Low dinosaur biodiversity in central China 2 million years prior to the end-Cretaceous mass extinction". Proceedings of the National Academy of Sciences. 119 (39): e2211234119. Bibcode:2022PNAS..11911234H. doi:10.1073/pnas.2211234119. ISSN 0027-8424. PMC 9522366. PMID 36122246.
  • ^ Condamine, Fabien L.; Guinot, Guillaume; Benton, Michael J.; Currie, Philip J. (29 June 2021). "Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures". Nature Communications. 12 (1): 3833. Bibcode:2021NatCo..12.3833C. doi:10.1038/s41467-021-23754-0. ISSN 2041-1723. PMC 8242047. PMID 34188028.
  • Bibliography[edit]

    • Archibald, David; David Fastovsky (2004). "Dinosaur Extinction" (PDF). In Weishampel David B; Dodson Peter; Osmólska Halszka (eds.). The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 672–684. ISBN 978-0-520-24209-8. Archived (PDF) from the original on 2017-03-18. Retrieved 2017-01-14.
  • Benton, M. J. (1990). "Scientific methodologies in collision: the history of the study of the extinction of the dinosaurs". Evolutionary Biology. 24: 371–400. Retrieved 2017-01-14.
  • Carpenter, Kenneth (1999). Eggs, Nests, and Baby Dinosaurs: A Look at Dinosaur Reproduction. Life of the Past. Indiana University Press. ISBN 978-0-253-33497-8. OCLC 42009424.
  • Lockley, Martin G.; Meyer, C. A. (2000). Dinosaur Tracks and other fossil footprints of Europe. New York: Columbia University Press. ISBN 978-0-231-10710-5. OCLC 363469682.
  • Powell, James Lawrence (1998). Night Comes to the Cretaceous: Comets, Craters, Controversy, and the Last Days of the Dinosaur. Harcourt Brace. ISBN 978-0-15-600703-0. OCLC 41143003.
  • Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A.; Barton, Penny J.; Bown, Paul R.; Bralower, Timothy J.; Christeson, Gail L.; Claeys, Philippe; Cockel, Charles S.; Collins, Gareth S.; Deutsch, Alexander; Goldin, Tamara J.; Goto, Kazuhisa; Grajales-Nishimura, José M.; Grieve, Richard A. F.; Gulick, Sean P. S.; Johnson, Kirk R.; Kiessling, Wolfgang; Koeberl, Christian; Kring, David A.; MacLeod, Kenneth G.; Matsui, Takafumi; Melosh, Jay; Montanari, Alessandro; Morgan, Joanna V.; Clive R., Neal; Nichols, Douglas J.; Norris, Richard D.; Pierazzo, Elisabetta; Ravizza, Greg; Rebolledo-Vieyra, Mario; Reimold, Wolf Uwe; Robin, Eric; Salge, Tobias; Speijer, Robert P.; Sweet, Arthur R.; Urrutia-Fucugauchi, Jaime; Vajda, Vivi; Whalen, Michael T.; Willumsen, Pi S. (2010-03-05). "The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous–Paleogene Boundary" (PDF). Science. 327 (5970): 1214–1218. Bibcode:2010Sci...327.1214S. doi:10.1126/science.1177265. PMID 20203042. S2CID 2659741.
  • External links[edit]

  • icon Paleontology
  • image History of science

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Timeline_of_Cretaceous–Paleogene_extinction_event_research&oldid=1227353668"

    Categories: 
    Paleontology timelines
    CretaceousPaleogene boundary
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with specifically marked weasel-worded phrases
    Articles with specifically marked weasel-worded phrases from June 2020
    Wikipedia articles needing clarification from June 2020
    Commons category link is locally defined
     



    This page was last edited on 5 June 2024, at 06:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki