Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Kinetic trans effect  





2 Structural trans effect  





3 References  





4 Further reading  














Trans effect






Čeština
Deutsch
Eesti
Español
Français
Қазақша
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Ininorganic chemistry, the trans effect is the increased labilityofligands that are trans to certain other ligands, which can thus be regarded as trans-directing ligands. It is attributed to electronic effects and it is most notable in square planar complexes, although it can also be observed for octahedral complexes.[1] The analogous cis effect is most often observed in octahedral transition metal complexes.

In addition to this kinetic trans effect, trans ligands also have an influence on the ground state of the molecule, the most notable ones being bond lengths and stability. Some authors prefer the term trans influence to distinguish it from the kinetic effect,[2] while others use more specific terms such as structural trans effectorthermodynamic trans effect.[1]

The discovery of the trans effect is attributed to Ilya Ilich Chernyaev,[3] who recognized it and gave it a name in 1926.[4]

Kinetic trans effect

[edit]

The intensity of the trans effect (as measured by the increase in rate of substitution of the trans ligand) follows this sequence:

F, H2O, OH < NH3 < py < Cl < Br < I, SCN, NO2, SC(NH2)2, Ph < SO32− < PR3, AsR3, SR2, CH3 < H, NO, CO, CN, C2H4

The classic example of the trans effect is the synthesis of cisplatin and its trans isomer.[5] Starting from PtCl42−, the first NH3 ligand is added to any of the four equivalent positions at random. However, since Cl has a greater trans effect than NH3, the second NH3 is added trans to a Cl and therefore cis to the first NH3.

Synthesis of cisplatin using the trans effect

If, on the other hand, one starts from Pt(NH3)42+, the trans product is obtained instead:

Synthesis of transplatin using the trans effect

The trans effect in square complexes can be explained in terms of an addition/elimination mechanism that goes through a trigonal bipyramidal intermediate. Ligands with a high trans effect are in general those with high π acidity (as in the case of phosphines) or low-ligand lone-pair–dπ repulsions (as in the case of hydride), which prefer the more π-basic equatorial sites in the intermediate. The second equatorial position is occupied by the incoming ligand; due to the principle of microscopic reversibility, the departing ligand must also leave from an equatorial position. The third and final equatorial site is occupied by the trans ligand, so the net result is that the kinetically favored product is the one in which the ligand trans to the one with the largest trans effect is eliminated.[2]

Structural trans effect

[edit]

The structural trans effect can be measured experimentally using X-ray crystallography, and is observed as a stretching of the bonds between the metal and the ligand trans to a trans-influencing ligand. Stretching by as much as 0.2 Å occurs with strong trans-influencing ligands such as hydride. A cis influence can also be observed, but is smaller than the trans influence. The relative importance of the cis and trans influences depends on the formal electron configuration of the metal center, and explanations have been proposed based on the involvement of the atomic orbitals.[6]

Example of the structural trans effect: the effect induced by triethylphosphine ligands is stronger than induced by chloride ion ligands.

References

[edit]
  1. ^ a b Coe, B. J.; Glenwright, S. J. Trans-effects in octahedral transition metal complexes. Coordination Chemistry Reviews 2000, 203, 5-80.
  • ^ a b Robert H. Crabtree (2005). The Organometallic Chemistry of the Transition Metals (4th ed.). New Jersey: Wiley-Interscience. ISBN 0-471-66256-9.
  • ^ Kauffmann, G. B. I'lya I'lich Chernyaev (1893-1966) and the Trans Effect. J. Chem. Educ. 1977, 54, 86-89.
  • ^ Chernyaev, I. I. The mononitrites of bivalent platinum. I. Ann. inst. platine (USSR) 1926, 4, 243-275.
  • ^ George B. Kauffman; Dwaine O. Cowan (1963). "cis - and trans -Dichlorodiammineplatinum(II)". Inorganic Syntheses. Vol. 7. pp. 239–245. doi:10.1002/9780470132388.ch63. ISBN 978-0-470-13238-8. {{cite book}}: |journal= ignored (help)
  • ^ Anderson, K. M.; Orpen, A. G. On the relative magnitudes of the cis and trans influences in metal complexes. Chem. Commun. 2001, 2682-2683. doi:10.1039/b108517b
  • Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Trans_effect&oldid=1230360892"

    Category: 
    Coordination chemistry
    Hidden categories: 
    CS1 errors: periodical ignored
    Articles with short description
    Short description with empty Wikidata description
     



    This page was last edited on 22 June 2024, at 08:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki