Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Crystal structure and properties  





2 Typical performance of DLATGS detectors  





3 References  














Triglycine sulfate






تۆرکجه
Deutsch
فارسی

Русский
Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Triglycine sulfate
Names
IUPAC name

Glycine sulfate (3:1)

Other names

Glycine sulfate; TGS

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.007.414 Edit this at Wikidata
EC Number
  • 208-154-2

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/3C2H5NO2.H2O4S/c3*3-1-2(4)5;1-5(2,3)4/h3*1,3H2,(H,4,5);(H2,1,2,3,4)

  • O=C(O)CN.O=S(=O)(O)O.O=C(O)CN.O=C(O)CN

Properties

Chemical formula

C6H17N3O10S
Molar mass 323.27 g·mol−1
Appearance White powder
Density 1.69 g/cm3[1]
Structure

Crystal structure

Monoclinic

Space group

P21[2]

Lattice constant

a = 0.9417 nm, b = 1.2643 nm, c = 0.5735 nm

α = 90°, β = 110°, γ = 90°

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Triglycine sulfate (TGS) is a chemical compound with a formula (NH2CH2COOH)3·H2SO4. The empirical formula of TGS does not represent the molecular structure, which contains protonated glycine moieties and sulfate ions. TGS with protons replaced by deuterium is called deuterated TGS or DTGS; alternatively, DTGS may refer to doped TGS. By doping the DTGS with the amino acid L-Alanine, the crystal properties are improved and the new material is called Deuterated L-Alanine doped Triglycine Sulfate (DLATGSorDLTGS). These crystals are pyroelectric and ferroelectric which allows their use as photodetector elements in infrared spectroscopy and night vision applications.[3] TGS detectors have also been used as the target in vidicon cathode ray imager tubes.

TGS has a critical point for the order parameter of polarization, at 322.5 K.[4]

Crystal structure and properties[edit]

Crystal structure of TGS. Hydrogen atoms are not shown.[2]

TGS crystals may be formed by evaporation of an aqueous solution of sulfuric acid and a greater than three-fold excess of glycine.[5] They belong to the polar space group P21 and therefore are pyroelectric and ferroelectric at room temperature, exhibiting spontaneous polarization along the b-axis ([010] direction). The Curie temperature of the ferroelectric transition is 49 °C for TGS and 62 °C for DTGS. The crystal structure consists of SO42−, 2(N+H3CH2COOH) (G1 and G2 in the crystal-structure diagram), and +NH3CH2COO (G3) species held together by hydrogen bonds.[6] These bonds are easily broken by the polar molecules of water, which leads to the hygroscopicity of TGS – its crystals are easily etched by water. Along the b-axis, the G1-SO4 and G2-G3 layers are stacked alternately. The nearest two neighboring layers with identical chemical composition are rotated 180° around the b-axis against each other.[2][7] DTGS and DLATGS materials are derivatives of TGS which have better pyroelectric properties and give less detector noise as can be shown in the following table.

Ferroelectric properties of pure and doped triglycine sulfate crystal[8][9][10][11][12][13]
Material TGS DTGS DLATGS
Doping - D2O as a solvent 20% wt. L-Alanine
Temperature of measurement (oC) 25
Curie temperature (oC) 49 57-62 58-62
Dielectric Constant at 1 kHz 22-35 18-22.5 18-22
Spontaneous Polarization (μC/cm2) 2.75 2.6 -
Coercive electric field (V/cm) 165 V/cm
Inherent bias field (kV/cm) 0.664-5 0.664-5 2-5
Dielectric loss tan δ ~1×10−3-10×10−3
Figure of Merits (FOMs)

Fi =p (nC/cm2.oK)

FV =p/ε´ (nC/cm2.oK)

FD = p/√ε ′′ (nC/cm2.oK)

16-45

0.5-1.14

0.4-121

25-70

1.4

-

25

1.13

-

Volume Specific Heat (J/ cm3.oK) 2.5 2.5 2.7
Density (g/cm3) 1.66 1.7 1.7
AC Resistivity at 1 kHz (Ω.cm×1010) 1.7 5 2.4

Typical performance of DLATGS detectors[edit]

The typical performance and pyroelectric properties of DLATGS detectors of 1.3 and 2.0 mm in diameter of the element size are shown in the table below.

Typical performance and pyroelectric properties of DLATGS detector[14][15][16]
Element size (mm) Voutat

1 kHz

Voltage responsivity

V/W at 1 kHz                  

Vn at 1 kHz         

(1 Hz BW)

D* at 1 kHz

Detectivity (cmHz1/2/W)

C (pF) tan δ NEP

(W/√Hz)

1.3 Typical 3.20E-5 50 3.00E-8 Maximum 2.70E+8 10.6 (at 20 μm) 0.003 4.50E-10
2.0 Typical 3.20E-5 30 2.00E-8 Maximum 3.50E+8 25 (at 25 μm) 0.003 4.50E-10

References[edit]

  1. ^ Kwan-Chi Kao (2004). Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes. Academic Press. pp. 318–. ISBN 978-0-12-396561-5. Retrieved 12 May 2011.
  • ^ a b c Subramanian Balakumar and Hua C. Zeng (2000). "Water-assisted reconstruction on ferroelectric domain ends of triglycine sulfate (NH2CH2COOH)3·H2SO4 crystals". J. Mater. Chem. 10 (3): 651–656. doi:10.1039/A907937H.
  • ^ "Pyroelectric Detectors: Materials, Applications, and Working Principle" (PDF).
  • ^ Gonzalo, J. A. (1966-04-15). "Critical Behavior of Ferroelectric Triglycine Sulfate". Physical Review. 144 (2): 662–665. Bibcode:1966PhRv..144..662G. doi:10.1103/PhysRev.144.662.
  • ^ Pandya, G. R.; Vyas, D.D (1980). "Crystallization of glycine-sulfate". Journal of Crystal Growth. 5 (4): 870–872. Bibcode:1980JCrGr..50..870P. doi:10.1016/0022-0248(80)90150-5.
  • ^ Choudhury, Rajul Ranjan; Chitra, R. (2008). "Single crystal neutron diffraction study of triglycine sulphate revisited". Pramana. 71 (5): 911–915. Bibcode:2009Prama..71..911C. doi:10.1007/s12043-008-0199-5. S2CID 122953651.
  • ^ Wood, E.A.; Holden, A.N. (1957). "Monoclinic glycine sulfate: crystallographic data". Acta Crystallogr. 10 (2): 145–146. Bibcode:1957AcCry..10..145W. doi:10.1107/S0365110X57000481.
  • ^ D., Aggarwal, M. (2010). Pyroelectric materials for uncooled infrared detectors : processing, properties, and applications. National Aeronautics and Space Administration, Marshall Space Flight Center. OCLC 754804811.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ "DEVELOPMENT OF IMPROVED PYROELECTRIC DETECTORS" (PDF).
  • ^ "Pyroelectric materials" (PDF).
  • ^ Aravazhi, S; Jayavel, R; Subramanian, C (1997-10-15). "Growth and stability of pure and amino doped TGS crystals". Materials Chemistry and Physics. 50 (3): 233–237. doi:10.1016/S0254-0584(97)01939-1. ISSN 0254-0584.
  • ^ Aggarwal, M.D., Batra, A.K., Guggilla, P., Edwards, M.E., Penn, B.G. and Currie Jr, J.R. "Pyroelectric materials for uncooled infrared detectors: processing, properties, and applications" (PDF). NASA Technical Memorandum.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ https://ntrs.nasa.gov/api/citations/19720013777/downloads/19720013777.pdf [bare URL PDF]
  • ^ Srinivasan, M. R. (1984-05-01). "Pyroelectric materials". Bulletin of Materials Science. 6 (2): 317–325. doi:10.1007/BF02743905. ISSN 0973-7669. S2CID 189911723.
  • ^ Company, Leonardo. "DLATGS Detectors" (PDF).
  • ^ Components, Laser. "D31 / LT31 Series Single Channel Voltage Mode Pyroelectric Detectors".

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Triglycine_sulfate&oldid=1211197666"

    Categories: 
    Infrared sensor materials
    Sulfates
    Hidden categories: 
    CS1 maint: multiple names: authors list
    All articles with bare URLs for citations
    Articles with bare URLs for citations from March 2022
    Articles with PDF format bare URLs for citations
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 1 March 2024, at 09:29 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki