Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of B vitamins  





2 Sources  





3 Molecular functions  





4 Deficiencies  





5 Side effects  





6 Discovery  





7 Related compounds  





8 References  














B vitamins






العربية
Azərbaycanca

Беларуская
Български
Català
Čeština
Cymraeg
Dansk
Deutsch
ދިވެހިބަސް
Eesti
Español
Esperanto
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Íslenska
Italiano
עברית

Kurdî
Lëtzebuergesch
Lietuvių


Bahasa Melayu
Nederlands


Norsk bokmål
Occitan
ି
Oʻzbekcha / ўзбекча

Polski
Português
Română
Русский
Shqip
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Türkçe
Українська
اردو
ئۇيغۇرچە / Uyghurche
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 

(Redirected from Vitamin B)

B vitamins are a class of water-soluble vitamins that play important roles in cell metabolism and synthesis of red blood cells.[1][2] They are a chemically diverse class of compounds.[1]

Dietary supplements containing all eight are referred to as a vitamin B complex. Individual B vitamins are referred to by B-number or by chemical name, such as B1 for thiamine, B2 for riboflavin, and B3 for niacin,[1][2] while some are more commonly recognized by name than by number, such as pantothenic acid (B5), biotin (B7), and folate (B9).[1] B vitamins are present in protein-rich foods, such as fish, poultry, meat, dairy products, and eggs; they are also found in leafy green vegetables, beans, and peas.[1] Fortified foods, such as breakfast cereals, baked products, and infant formulas, may contain B vitamins.[1]

Each B vitamin is either a cofactor (generally a coenzyme) for key metabolic processes or is a precursor needed to make one.[1][2]

List of B vitamins[edit]

List of B vitamins
Vitamin Name Description
Vitamin B1 Thiamine Acoenzyme in the catabolismofsugars and amino acids.
Vitamin B2 Riboflavin Aprecursorofcoenzymes called FAD and FMN, which are needed for flavoprotein enzyme reactions, including activation of other vitamins
Vitamin B3 Niacin (nicotinic acid) A precursor of coenzymes called NAD and NADP, which are needed in many metabolic processes.
Niacinamide
Nicotinamide riboside
Vitamin B5 Pantothenic acid A precursor of coenzyme A and therefore needed to metabolize many molecules.
Vitamin B6 Pyridoxine A coenzyme in many enzymatic reactions in metabolism.
Pyridoxal
Pyridoxamine
Vitamin B7 Biotin A coenzyme for carboxylase enzymes, needed for synthesis of fatty acids and in gluconeogenesis.
Vitamin B9 Folate A precursor needed to make, repair, and methylate DNA; a cofactor in various reactions; especially important in aiding rapid cell division and growth, such as in infancy and pregnancy.
Vitamin B12 Cobalamins Commonly cyanocobalaminormethylcobalamin in vitamin supplements. A coenzyme involved in the metabolism of all animal cells, especially affecting DNA synthesis and regulation, but also fatty acid metabolism and amino acid metabolism.

Note: Other substances once thought to be vitamins were given B-numbers, but were disqualified once discovered to be either manufactured by the body or not essential for life. See #Related compounds for numbers 4, 8, 10, 11, and others.

Sources[edit]

B vitamins are found in abundance in meat, eggs, and dairy products.[2] Processed carbohydrates such as sugar and white flour tend to have lower B vitamin content than their unprocessed counterparts. For this reason, it is common in many countries (including the United States) that the B vitamins thiamine, riboflavin, niacin, and folic acid are added back to white flour after processing. This is referred to as "enriched flour" on food labels. B vitamins are particularly concentrated in meat such as turkey, tuna and liver.[3]

Sources for B vitamins also include spinach, legumes (pulses or beans), whole grains, asparagus, potatoes, bananas, chili peppers, breakfast cereals.[2] The B12 vitamin is not abundantly available from plant products[4] (although it has been found in moderate abundance in fermented vegetable products, certain seaweeds, and in certain mushrooms, with the bioavailability of the vitamin in these cases remaining uncertain),[5] making B12 deficiency a legitimate concern for those maintaining a vegan diet. Manufacturers of plant-based foods will sometimes report B12 content, leading to confusion about what sources yield B12. The confusion arises because the standard US Pharmacopeia (USP) method for measuring the B12 content does not measure the B12 directly. Instead, it measures a bacterial response to the food. Chemical variants of the B12 vitamin found in plant sources are active for bacteria, but cannot be used by the human body. This same phenomenon can cause significant over-reporting of B12 content in other types of foods as well.[6]

A common way to increase vitamin B intake is by using dietary supplements. B vitamins are commonly added to energy drinks, many of which have been marketed with large amounts of B vitamins.[7]

Because they are soluble in water, excess B vitamins are generally readily excreted, although individual absorption, use and metabolism may vary.[7] The elderly and athletes may need to supplement their intake of B12 and other B vitamins due to problems in absorption and increased needs for energy production.[medical citation needed] In cases of severe deficiency, B vitamins, especially B12, may also be delivered by injection to reverse deficiencies.[8][unreliable medical source?] Both type 1 and type 2 diabetics may also be advised to supplement thiamine based on high prevalence of low plasma thiamine concentration and increased thiamine clearance associated with diabetes.[9] Also, folate deficiency in early embryo development has been linked to neural tube defects. Thus, women planning to become pregnant are usually encouraged to increase daily dietary folate intake or take a supplement.[10]

Molecular functions[edit]

Vitamin Name Structure Molecular function
Vitamin B1 Thiamine
Thiamine plays a central role in the release of energy from carbohydrates. It is involved in RNA and DNA production, as well as nerve function. Its active form is a coenzyme called thiamine pyrophosphate (TPP), which takes part in the conversion of pyruvate to acetyl coenzyme A in metabolism.[11]
Vitamin B2 Riboflavin
Riboflavin is involved in release of energy in the electron transport chain, the citric acid cycle, as well as the catabolism of fatty acids (beta oxidation).[12]
Vitamin B3 Niacin
Niacin is composed of two structures: nicotinic acid and nicotinamide. There are two co-enzyme forms of niacin: nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Both play an important role in energy transfer reactions in the metabolism of glucose, fat and alcohol.[13] NAD carries hydrogens and their electrons during metabolic reactions, including the pathway from the citric acid cycle to the electron transport chain. NADP is a coenzyme in lipid and nucleic acid synthesis.[14]
Vitamin B5 Pantothenic acid
Pantothenic acid is involved in the oxidation of fatty acids and carbohydrates. Coenzyme A, which can be synthesised from pantothenic acid, is involved in the synthesis of amino acids, fatty acids, ketone bodies, cholesterol,[15][better source needed] phospholipids, steroid hormones, neurotransmitters (such as acetylcholine), and antibodies.[16]
Vitamin B6 Pyridoxine, pyridoxal, pyridoxamine
The active form pyridoxal 5'-phosphate (PLP) (depicted) serves as a cofactor in many enzyme reactions mainly in amino acid metabolism including biosynthesis of neurotransmitters.[17]
Vitamin B7 Biotin
Biotin plays a key role in the metabolism of lipids, proteins and carbohydrates. It is a critical co-enzyme of four carboxylases: acetyl CoA carboxylase, which is involved in the synthesis of fatty acids from acetate; pyruvate CoA carboxylase, involved in gluconeogenesis; β-methylcrotonyl CoA carboxylase, involved in the metabolism of leucine; and propionyl CoA carboxylase, which is involved in the metabolism of energy, amino acids and cholesterol.[18][better source needed]
Vitamin B9 Folate
Folate acts as a co-enzyme in the form of tetrahydrofolate (THF), which is involved in the transfer of single-carbon units in the metabolism of nucleic acids and amino acids. THF is involved in purine and pyrimidine nucleotide synthesis, so is needed for normal cell division, especially during pregnancy and infancy, which are times of rapid growth. Folate also aids in erythropoiesis, the production of red blood cells.[19]
Vitamin B12 Cobalamin
Vitamin B12 is involved in the cellular metabolism of carbohydrates, proteins and lipids. It is essential in the production of blood cells in bone marrow, and for nerve sheaths and proteins.[20][better source needed] Vitamin B12 functions as a co-enzyme in intermediary metabolism for the methionine synthase reaction with methylcobalamin, and the methylmalonyl CoA mutase reaction with adenosylcobalamin.[21]

To the right, a diagram of some of the major B vitamins (2, 3, 5, 9, and 12) are shown as precursors for certain essential biochemical reactants (FAD, NAD+, coenzyme A, and heme B respectively). The structural similarities between them are highlighted, which illustrates the precursor nature of many B vitamins while also showing the functionality of the end product used by essential reactions to support human, animal, or cellular life.

FAD, NAD+, and coenzyme A are all essential for the catabolic release of free energy (dG) to power the activity of the cell and more complex life forms. See the article on Catabolism for more details on how these three essential biochemical reactants help support life.

Tetrahydrofolate is a necessary co-reactant for synthesizing some amino acids, such as glycine. Heme B is the porphyrin derivative macrocycle molecule that holds the iron atom in place in hemoglobin, allowing for the transportation of oxygen through blood.

Deficiencies[edit]

Several named vitamin deficiency diseases may result from the lack of sufficient B vitamins.[2] Deficiencies of other B vitamins result in symptoms that are not part of a named deficiency disease.

Vitamin Name Deficiency effects
Vitamin B1 Thiamine Thiamine deficiency causes beriberi. Symptoms of this disease of the nervous system include weight loss, emotional disturbances, Wernicke encephalopathy (impaired sensory perception), weakness and pain in the limbs, periods of irregular heartbeat, and edema (swelling of bodily tissues). Heart failure and death may occur in advanced cases. Chronic thiamine deficiency can also cause alcoholic Korsakoff syndrome, an irreversible dementia characterized by amnesia and compensatory confabulation.
Vitamin B2 Riboflavin Riboflavin deficiency can cause ariboflavinosis, which may result in cheilosis (cracks in the lips), high sensitivity to sunlight, angular cheilitis, glossitis (inflammation of the tongue), seborrheic dermatitis or pseudo-syphilis (particularly affecting the scrotumorlabia majora and the mouth), pharyngitis (sore throat), hyperemia, and edema of the pharyngeal and oral mucosa.
Vitamin B3 Niacin Niacin deficiency, along with a deficiency of tryptophan, causes pellagra. Symptoms include aggression, dermatitis, insomnia, weakness, mental confusion, and diarrhea. In advanced cases, pellagra may lead to dementia and death (the 3(+1) D's: dermatitis, diarrhea, dementia, and death).
Vitamin B5 Pantothenic acid Pantothenic acid deficiency can result in acne and paresthesia, although it is uncommon.
Vitamin B6 Pyridoxine, pyridoxal, pyridoxamine Vitamin B6 deficiency causes seborrhoeic dermatitis-like eruptions, pink eye and neurological symptoms (e.g. epilepsy).
Vitamin B7 Biotin Biotin deficiency does not typically cause symptoms in adults, other than cosmetic issues such as decreased hair and nail growth, but may lead to impaired growth and neurological disorders in infants. Multiple carboxylase deficiency, an inborn error of metabolism, can lead to biotin deficiency even when dietary biotin intake is normal.
Folate Folic acid Folic acid deficiency results in a macrocytic anemia, and elevated levels of homocysteine. Deficiency in pregnant women can lead to birth defects, particularly neural tube defects such as spina bifida and anencephaly.
Vitamin B12 Cobalamins Vitamin B12 deficiency results in a macrocytic anemia, elevated methylmalonic acid and homocysteine, peripheral neuropathy, sense loss, change in mobility, memory loss and other cognitive deficits. It is most likely to occur among elderly people, as absorption through the gut declines with age; the autoimmune disease pernicious anemia is another common cause. It can also cause symptoms of mania and psychosis. Untreated, it is possible to cause irreversible damage to the brain and nerve system — In rare extreme cases, paralysis can result.

Side effects[edit]

Because water-soluble B vitamins are eliminated in the urine, taking large doses of certain B vitamins usually only produces transient side effects (only exception is pyridoxine). General side effects may include restlessness, nausea and insomnia. These side effects are almost always caused by dietary supplements and not foodstuffs.

Vitamin Tolerable Upper Intake Level (UL) Harmful effects
Vitamin B1 None[22] No known toxicity from oral intake. There are some reports of anaphylaxis caused by high-dose thiamin injections into the vein or muscle. However, the doses were greater than the quantity humans can physically absorb from oral intake.[22]
Vitamin B2 None[23] No evidence of toxicity based on limited human and animal studies. The only evidence of adverse effects associated with riboflavin comes from in vitro studies showing the production of reactive oxygen species (free radicals) when riboflavin was exposed to intense visible and UV light.[23]
Vitamin B3 US UL = 35 mg as a dietary supplement[24] Intake of 3000 mg/day of nicotinamide and 1500 mg/day of nicotinic acid are associated with nausea, vomiting, and signs and symptoms of liver toxicity. Other effects may include glucose intolerance, and (reversible) ocular effects. Additionally, the nicotinic acid form may cause vasodilatory effects, also known as flushing, including redness of the skin, often accompanied by an itching, tingling, or mild burning sensation, which is also often accompanied by pruritus, headaches, and increased intracranial blood flow, and occasionally accompanied by pain.[24] Medical practitioners prescribe recommended doses up to 2000 mg per day of niacin in either immediate-release or slow-release formats, to lower plasma triglycerides and low-density lipiprotein cholesterol.[25]
Vitamin B5 None No toxicity known.
Vitamin B6 US UL = 100 mg/day; EU UL = 25 mg/day See Megavitamin-B6 syndrome for more information.
Vitamin B7 None No toxicity known.
Folate 1 mg/day[26] Masks B12 deficiency, which can lead to permanent neurological damage.[26]
Vitamin B12 None established[27] Skin and spinal lesions. Acne-like rash [causality is not conclusively established].[27][28]

Discovery[edit]

Vitamin Name Discoverer Date Notes
Vitamin B1 Thiamine Umetaro Suzuki 1910 Failed to gain publicity.
Casimir Funk 1912
Vitamin B2 Riboflavin D.T Smith and E.G Hendrick 1926 Max Tishler invented methods for synthesizing it.
Vitamin B3 Niacin Conrad Elvehjem 1937
Vitamin B5 Pantothenic acid Roger J. Williams 1933
Vitamin B6 Pyridoxine etc. Paul Gyorgy 1934
Vitamin B7 Biotin Research by multiple independent groups in the early 1900s; credits for discovery include Margaret Averil Boas (1927),[29] Paul Gyorgy (1939, as Vitamin H),[30] and Dean Burk.[31]
Vitamin B9 Folic acid Lucy Wills 1933
Vitamin B12 Cobalamins Five people have been awarded Nobel Prizes for direct and indirect studies of vitamin B12: George Whipple, George Minot and William Murphy (1934), Alexander R. Todd (1957), and Dorothy Hodgkin (1964).[32]

Related compounds[edit]

Many of the following substances have been referred to as vitamins as they were once believed to be vitamins. They are no longer considered as such, and the numbers that were assigned to them now form the "gaps" in the true series of B-complex vitamins described above (for example, there is no vitamin B4). Some of them, though not essential to humans, are essential in the diets of other organisms; others have no known nutritional value and may even be toxic under certain conditions.

References[edit]

  1. ^ a b c d e f g Hanna M, Jaqua E, Nguyen V, Clay J (June 2022). "B Vitamins: Functions and Uses in Medicine". The Permanente Journal. 26 (2): 89–97. doi:10.7812/TPP/21.204. PMC 9662251. PMID 35933667.
  • ^ a b c d e f "B vitamins". MedlinePlus, National Library of Medicine, US National Institutes of Health. 23 September 2021. Retrieved 2 June 2024.
  • ^ Stipanuk, M.H. (2006). Biochemical, physiological, molecular aspects of human nutrition (2nd ed.). St Louis: Saunders Elsevier. p. 667. ISBN 9781416002093.
  • ^ Craig WJ (May 2009). "Health effects of vegan diets". The American Journal of Clinical Nutrition. 89 (5): 1627S–1633S. doi:10.3945/ajcn.2009.26736N. PMID 19279075.
  • ^ "Vitamin B12 supplements are essential for vegans". 14 February 2018.
  • ^ Herbert V (September 1988). "Vitamin B-12: plant sources, requirements, and assay". The American Journal of Clinical Nutrition. 48 (3 Suppl): 852–8. doi:10.1093/ajcn/48.3.852. PMID 3046314. Archived from the original on 24 February 2008.
  • ^ a b Woolston C (14 July 2008). "B vitamins don't boost energy drinks' power". Los Angeles Times. Archived from the original on 19 October 2008. Retrieved 8 October 2008.
  • ^ "Vitamin B injections mentioned". Archived from the original on 3 July 2008. Retrieved 29 July 2008.
  • ^ Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, et al. (October 2007). "High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease". Diabetologia. 50 (10): 2164–70. doi:10.1007/s00125-007-0771-4. PMC 1998885. PMID 17676306.
  • ^ Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA (May 1995). "Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects". Epidemiology. 6 (3): 219–26. doi:10.1097/00001648-199505000-00005. PMID 7619926. S2CID 2740838.
  • ^ Fattal-Valevski A (2011). "Thiamin (vitamin B1)". Journal of Evidence-Based Complementary & Alternative Medicine. 16 (1): 12–20. doi:10.1177/1533210110392941. S2CID 71436117.
  • ^ Guide to Nutritional Supplements. Academic Press. 2 September 2009. ISBN 978-0-12-375661-9.
  • ^ Whitney N, Rolfes S, Crowe T, Cameron-Smith D, Walsh A (2011). Understanding Nutrition. Melbourne: Cengage Learning.
  • ^ National Academy of Sciences. Institute of Medicine. Food and Nutrition Board, ed. (1998). "Chapter 6 - Niacin". Dietary Reference Intakes for Tjiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline. Washington, DC: National Academy Press.
  • ^ Schnepp, Zoe (2002). "Pantothenic Acid". University of Bristol. Retrieved 16 September 2012 – via bris.ac.uk.
  • ^ Gropper S, Smith J (2009). Advanced nutrition and human metabolism. Belmont, California: Cengage Learning.
  • ^ "Vitamin B6". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. May 2014. Archived from the original on 14 March 2018. Retrieved 7 March 2017.
  • ^ Schnepp, Zoe (2002). "Biotin". University of Bristol. Retrieved 17 September 2012 – via bris.ac.uk.
  • ^ National Academy of Sciences. Institute of Medicine. Food and Nutrition Board, ed. (1998). "Chapter 8 - Folate". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline. Washington, DC: National Academy Press.
  • ^ Schnepp, Zoe (2002). "Vitamin B12". University of Bristol. Retrieved 16 September 2012 – via bris.ac.uk.
  • ^ Sardesai, Vishwanath (11 April 2003). Introduction to Clinical Nutrition. CRC Press. ISBN 978-0-203-91239-3.
  • ^ a b National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 4 - Thiamin". Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 58–86. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 17 June 2009.
  • ^ a b National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 5 - Riboflavin". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 87–122. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 17 June 2009.
  • ^ a b National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 6 - Niacin". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 123–149. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 17 June 2009.
  • ^ "Niaspan" (PDF). www.rxabbott.com. Archived from the original (PDF) on 2012-06-08. Retrieved 2010-11-17.
  • ^ a b National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 8 - Folate". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. pp. 196–305. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 18 June 2009. Retrieved 17 June 2009.
  • ^ a b National Academy of Sciences. Institute of Medicine. Food and Nutrition Board., ed. (1998). "Chapter 9 - Vitamin B12". Dietary Reference Intakes for Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press. p. 346. ISBN 978-0-309-06411-8. Archived from the original (PDF) on 11 October 2010. Retrieved 23 September 2010.
  • ^ Dupré A, Albarel N, Bonafe JL, Christol B, Lassere J (August 1979). "Vitamin B-12 induced acnes". Cutis. 24 (2): 210–1. PMID 157854.
  • ^ Food and Nutrition Board, Institute of Medicine (1998). "Biotin". Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press. pp. 374–389.
  • ^ Gyorgy P (December 1939). "The Curative Factor (vitamin H) for Egg White Injury, with Particular Reference to Its Presence in Different Foodstuffs and in Yeast". Journal of Biological Chemistry. 131 (2): 733–744. doi:10.1016/S0021-9258(18)73468-6.
  • ^ "Dean Burk, 84, Chemist for Cancer Institute". The New York Times. Associated Press. 10 October 1988. p. B8.
  • ^ "The Nobel Prize and the Discovery of Vitamins". www.nobelprize.org. Archived from the original on 16 January 2018. Retrieved 15 February 2018.
  • ^ Navarra T (1 January 2004). The Encyclopedia of Vitamins, Minerals, and Supplements. Infobase Publishing. p. 155. ISBN 978-1-4381-2103-1.
  • ^ Lundblad RL, Macdonald F (30 July 2010). Handbook of Biochemistry and Molecular Biology (Fourth ed.). CRC Press. pp. 251–. ISBN 978-1-4200-0869-2.
  • ^ Zeisel SH, da Costa KA (November 2009). "Choline: an essential nutrient for public health". Nutrition Reviews. 67 (11): 615–23. doi:10.1111/j.1753-4887.2009.00246.x. PMC 2782876. PMID 19906248.
  • ^ Reader V (1930). "The assay of vitamin B(4)". The Biochemical Journal. 24 (6): 1827–31. doi:10.1042/bj0241827. PMC 1254803. PMID 16744538.
  • ^ a b c d Bender DA (29 January 2009). A Dictionary of Food and Nutrition. Oxford University Press. p. 521. ISBN 978-0-19-157975-2.
  • ^ a b c Berdanier CD, Dwyer JT, Feldman EB (24 August 2007). Handbook of Nutrition and Food (Second ed.). CRC Press. p. 117. ISBN 978-1-4200-0889-0.
  • ^ "Vitamin B8 (Inositol) Overview Information". WebMD.com. WebMD, LLC.
  • ^ a b "Vitamin B10 (Para–aminobenzoic acid (PABA)): uses, side effects, interactions and warnings". WebMD.com. WebMD, LLC. Retrieved 24 January 2014.
  • ^ Capozzi V, Russo P, Dueñas MT, López P, Spano G (December 2012). "Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products" (PDF). Applied Microbiology and Biotechnology. 96 (6): 1383–94. doi:10.1007/s00253-012-4440-2. PMID 23093174. S2CID 1162368.
  • ^ a b "Para-aminobenzoic acid". Medline Plus Medical Encyclopedia. United States National Institutes of Health. Retrieved 24 January 2014.
  • ^ SPIES, TD; GARCIA LOPEZ, G (1947). "A comparative study of the effectiveness of synthetic folic acid, pteroyldiglutamic acid, pteroyltriglutamic acid and pteroylheptaglutamic acid (Bc conjugate)". Internationale Zeitschrift fur Vitaminforschung. International journal of vitamin research. Journal international de vitaminologie. 19 (1–2): 1–12. PMID 18905002.
  • ^ a b Herbert V, Subak-Sharpe GJ (15 February 1995). Total Nutrition: The Only Guide You'll Ever Need - From The Icahn School of Medicine at Mount Sinai. St. Martin's Press. p. 98. ISBN 978-0-312-11386-5.
  • ^ "CPG Sec. 457.100 Pangamic Acid and Pangamic Acid Products Unsafe for Food and Drug Use". Compliance Policy Guidance Manual. US Food and Drug Administration. March 1995. Retrieved 25 January 2014.
  • ^ a b Velisek J (24 December 2013). The Chemistry of Food. Wiley. p. 398. ISBN 978-1-118-38383-4.
  • ^ Lerner IJ (February 1984). "The whys of cancer quackery". Cancer. 53 (3 Suppl): 815–9. doi:10.1002/1097-0142(19840201)53:3+<815::AID-CNCR2820531334>3.0.CO;2-U. PMID 6362828. S2CID 36332694.
  • ^ Velisek J (24 December 2013). The Chemistry of Food. Wiley. p. 209. ISBN 978-1-118-38383-4.
  • ^ Bender DA (11 September 2003). Nutritional Biochemistry of the Vitamins. Cambridge University Press. p. 5. ISBN 978-1-139-43773-8.
  • ^ Carter HE, Bhattacharyya PK, Weidman KR, Fraenkel G (July 1952). "Chemical studies on vitamin BT isolation and characterization as carnitine". Archives of Biochemistry and Biophysics. 38 (1): 405–16. doi:10.1016/0003-9861(52)90047-7. PMID 12997117.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=B_vitamins&oldid=1227012508"

    Category: 
    B vitamins
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2016
    All articles lacking reliable references
    Articles lacking reliable references from August 2016
    Articles lacking reliable references from March 2020
    Articles needing additional references from January 2021
    All articles needing additional references
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 3 June 2024, at 03:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki