Aller au contenu
 







Menu principal
   


Navigation  



Accueil
Portails thématiques
Article au hasard
Contact
 




Contribuer  



Débuter sur Wikipédia
Aide
Communauté
Modifications récentes
Faire un don
 








Rechercher  

































Créer un compte

Se connecter
 









Créer un compte
 Se connecter
 




Pages pour les contributeurs déconnectés en savoir plus  



Contributions
Discussion
 



















Sommaire

   



Début
 


1 Définition et caractéristiques  



1.1  Définition  





1.2  Caractéristiques  



1.2.1  Caractéristiques physiques  





1.2.2  Gel et circulation de l'eau  









2 Dynamiques  



2.1  Extensions passées et actuelle  





2.2  La zone dite « active »  







3 Effets du réchauffement climatique  



3.1  Situation actuelle : dégel accéléré  





3.2  Boucle de rétroaction positive  







4 Modification des écosystèmes  



4.1  Virus  





4.2  Impact des exploitations minières  





4.3  Effets écopaysagers du dégel du pergélisol  







5 Voir aussi  



5.1  Articles connexes  





5.2  Liens externes  







6 Notes et références  



6.1  Notes  





6.2  Références  
















Pergélisol






Afrikaans
العربية
Asturianu
Žemaitėška
Беларуская
Беларуская (тарашкевіца)
Български

Буряад
Català
کوردی
Čeština
Чӑвашла
Dansk
Deutsch
Ελληνικά
English
Esperanto
Español
Eesti
Euskara
فارسی
Suomi
Frysk
Gaeilge
Galego
עברית
ि
Hrvatski
Kreyòl ayisyen
Magyar
Հայերեն
Bahasa Indonesia
Italiano


Қазақша

Кыргызча
Latina
Limburgs
Lietuvių
Latviešu
Bahasa Melayu
Nederlands
Norsk nynorsk
Norsk bokmål
Occitan
Polski
Português
Română
Русский
Саха тыла
سنڌي
Srpskohrvatski / српскохрватски

Simple English
Slovenčina
Slovenščina
Српски / srpski
Svenska
ி
Türkçe
Українська
اردو
Oʻzbekcha / ўзбекча
Tiếng Vit


 / Bân-lâm-gú

 

Modifier les liens
 









Article
Discussion
 

















Lire
Modifier
Modifier le code
Voir lhistorique
 








Outils
   


Actions  



Lire
Modifier
Modifier le code
Voir lhistorique
 




Général  



Pages liées
Suivi des pages liées
Téléverser un fichier
Pages spéciales
Lien permanent
Informations sur la page
Citer cette page
Obtenir l'URL raccourcie
Télécharger le code QR
Élément Wikidata
 




Imprimer/exporter  



Créer un livre
Télécharger comme PDF
Version imprimable
 




Dans dautres projets  



Wikimedia Commons
 
















Apparence
   

 






Un article de Wikipédia, l'encyclopédie libre.
 


L'image ci-dessus montre la répartition du pergélisol (mauve) et l'étendue maximale moyenne saisonnière et intermittente des terrains gelés dans l'hémisphère Nord. Le « sol gelé saisonnier » (bleu) désigne les zones où le sol est gelé pendant quinze jours ou plus par an, alors que « sol gelé par intermittence » (rose) se réfère à des zones où le sol est gelé pendant moins de quinze jours par an. La ligne pleine indique l'étendue maximale moyenne de la couverture de neige saisonnière. Le pergélisol occupe environ 22 790 000 km2 ou 23,9 % des terres émergées de l'hémisphère Nord. En moyenne, la mesure maximale du sol gelé saisonnier est d'environ 55 000 000 km2 ou 55 % de la superficie totale des terres, tandis que l'étendue maximale de la couverture de neige est d'environ 47 000 000 km2, soit environ 47 % de la surface totale des terres dans l'hémisphère nord[1].

Lepergélisol, parfois désigné par le terme anglais permafrost[a], est la partie d'un cryosol gelée en permanence, au moins pendant deux ans, et de ce fait imperméable[2],[3].

Le pergélisol existe dans les hautes latitudes (pergélisol polaire) mais aussi dans les hautes altitudes (pergélisol alpin). Il couvre un cinquième de la surface émergée, dont 90 % du Groenland, 80 % de l'Alaska, 50 % du Canada et de la Russie (plus particulièrement dans sa partie sibérienne). Le pergélisol polaire en Sibérie est plutôt un pergélisol continu au-delà du 60e degré de latitude. Le pergélisol alpin est plus sporadique à cause du terrain coupé avec des expositions très diverses[4].

Il est constitué thermiquement de trois couches : la première dite « active » dégèle en été et peut atteindre jusque deux à trois mètres ; la seconde, soumise à des fluctuations saisonnières mais constamment sous le point de congélation, constitue la partie du pergélisol stricto sensu et s'étend à une profondeur de 10 à 15 mètres ; la troisième peut atteindre plusieurs centaines de mètres, voire dépasser le millier de mètres (enYakoutie), ne connaît pas de variation saisonnière de température et est constamment congelée. La température s'y élève vers le bas sous l'influence des flux géothermique et atteint °C à la limite basse du pergélisol. Dans le pergélisol, la glace peut obturer les pores du sol ou constituer des corps de glace de différentes genèses. Les régions subarctiques sont en outre, du fait du caractère imperméable de la glace, des zones humides anoxiques de marais et de tourbière où ont pu se développer des micro-organismes méthanogènes. Du méthane se trouve par ailleurs dans les lacs de thermokarstoualass[5].

Carte distinguant différents types de pergélisols dans l'hémisphère Nord.
Localisation ; NSIDC.
Températures saisonnales extrêmes (lignes rouges) et valeur moyenne (ligne pointillée).

Les formations, persistance ou disparition du pergélisol, et son épaisseur sont très étroitement liées aux changements climatiques. C'est pourquoi le pergélisol est étudié en tant qu'indicateur du réchauffement climatique par un réseau mondial de chercheurs s'appuyant sur des sondages, des mesures de température et un suivi satellitaire, à l'initiative du réseau mondial de surveillance terrestre du pergélisol[6]. Le dégel rapide pourrait augmenter considérablement les quantités de gaz à effet de serre émises par les plantes et animaux anciens gelés[7].

Définition et caractéristiques[modifier | modifier le code]

Définition[modifier | modifier le code]

Le pergélisol, parfois désigné par le terme anglais permafrost, est la partie d'un cryosol gelée en permanence, au moins pendant deux ans, et de ce fait imperméable[2],[3].

Caractéristiques[modifier | modifier le code]

Caractéristiques physiques[modifier | modifier le code]

Là où il est présent depuis plusieurs cycles glaciaires, le pergélisol peut être épais de plusieurs centaines de mètres :

Les sols gelés de l’Arctique contiennent environ 1 668 milliards de tonnes de CO2[8].

La dégradation en profondeur de ce pergélisol se fait par advection de chaleur : de l'eau à l'état liquide circule dans les fractures en profondeur et dégèle la glace.

Gel et circulation de l'eau[modifier | modifier le code]

Paradoxalement, la congélation du sol en modifie les propriétés physiques (gonflement, changement de porosité…)[9],[10], mais de l'eau libre peut se former dans la glace elle-même[11], de même que dans un sol gelé[12] et une certaine conductivité hydraulique existe dans les sols gelés, plus ou moins importante selon la température, la saison[13] et le type de substrat[14] et de sol[15],[16], leur degré de « saturation »[17] et leur porosité[18]. Cette conductivité peut être mesurée[19], de même que la perméabilité d'un sol gelé[20]. Ce phénomène a une importance pour la circulation des nutriments qui alimentent la végétation de surface et les organismes du sol, mais aussi le cas échéant de polluants (ex : retombées de Tchernobyl ou aérosols ou gaz apportés par les pluies/neiges polluées par d'autres éléments). Dans les écosystèmes terrestres froids de type Taïga, toundra, ce cycle particulier de l'eau régule la vie du sol et affecte la vie de surface (via les fonctions des racines, mycorhizes, zones humides temporaires, etc.).

La circulation de l'eau dans un sol gelé correspond aussi à de lents (inertie d'autant plus forte que le pergélisol est épais) et subtils transferts de calories[21],[22],[23] qui peuvent réveiller des colonies bactériennes, fongiques ou symbiotiques des arbres et herbacées. Un sol gelé conserve donc une certaine capacité d'infiltration[24], voire de filtration. En surface, des phénomènes de cryoturbation peuvent compliquer les modélisations de transferts d'eau et de calorie.

Dynamiques[modifier | modifier le code]

Extensions passées et actuelle[modifier | modifier le code]

En l'an 2000, le pergélisol représentait 23,9 % de la surface mondiale, soit 22 790 000 km2[25] ou un quart des terres émergées de l'hémisphère Nord[26].

Le dernier maximum d'extension date d'il y a 18 000-20 000 ans lors du Dernier maximum glaciaire (DMG), alors que par exemple, toute la moitié Nord de la France était gelée et le niveau de la mer plus bas d'environ 120 m. Le minimum d'extension date d'il y a 6 000 ans lors de la phase Atlantique dit « optimum climatique de l'Holocène ». Depuis, hormis un réchauffement de quelques siècles dans les années 800 lors de l’optimum climatique médiéval, avant le Petit âge glaciaire (PAG), les étés de l'hémisphère Nord se sont refroidis provoquant une tendance à l'extension territoriale du pergélisol.

Pour définir l'extension passée du pergélisol, il faut pouvoir recueillir des traces inscrites dans les sédiments comme le lœss. Il s'agit par exemple de fentes en coin témoignant d'un réseau de polygones de toundra, des traces de solifluxion, ou de structures microscopiques dans des sédiments argileux qui indiquent la présence de glace et l'intensité du gel dans le sol (ségrégation de glace). Mais dans les terrains sans formations superficielles meubles, il est beaucoup plus difficile de connaître l'extension passée et de différencier par exemple entre pergélisol continu et discontinu.

En limite sud, le pergélisol à une température proche de zéro en été pourrait rapidement fondre. Le Canada envisage que sa limite sud puisse ainsi remonter de 500 km vers le nord en un siècle. Un peu plus vers le nord, seule la « couche active » gagnera de l'épaisseur en été, induisant une pousse de la végétation mais aussi des mouvements de terrain déterminant des phénomènes de « forêt ivre », des modifications hydrologiques et hydrographiques et des émissions accrues de méthane, le développement des populations de moustiquesetc. Certains modèles (canadiens) estiment que les effets significatifs apparaîtront dans les années 2025 à 2035[réf. nécessaire].

Le pergélisol occupait une surface bien plus vaste lors des périodes glaciairesduQuaternaire mais il contribue néanmoins à une forte inertie thermique des milieux des pays nordiques. On distingue des très hautes latitudes ou altitudes vers des latitudes (ou altitudes) moins élevées, un pergélisol continu, d'un pergélisol discontinu voire sporadique. La zone du pergélisol discontinu est tributaire de facteurs stationnaires (orientation du versant, protection thermique par un lac, une forêt, etc.).

La couche de sol la plus superficielle dégèle en été. Sur ce mollisoloucouche active, lors de la courte saison végétative, quelques plantes et organismes se développent, alors que ni les racines ni les animaux ne peuvent pénétrer le pergélisol vrai.

La zone dite « active »[modifier | modifier le code]

Construction sur Pergélisol dans le centre de Iakoutsk.

La couche active correspond à la zone du sol en surface qui dégèle en été par conduction de chaleur depuis la surface. Elle varie selon l'altitude et la latitude, mais aussi dans l'espace et dans le temps au rythme des glaciations et réchauffements. Lorsque l'enneigement diminue et laisse apparaître un sol plus foncé, la diminution de l'albédo qui en résulte contribue à une intensification des phénomènes de fonte et un approfondissement de la couche active. Cette zone est aujourd’hui généralement profonde de quelques centimètres à quelques décimètres. À sa limite sud, où elle est moins épaisse, elle pourrait s'étendre rapidement vers le nord. Dans les zones nordiques les constructions reposent aujourd'hui sur des pieux enfoncés à plusieurs mètres de profondeur, et il est recommandé de conserver un vide sous les maisons.

Alerte aux chutes de pierres en raison du dégel près du Glacier d'Aletsch.

Dans les Alpes, le pergélisol se retrouve au-dessus de 2 500 m sur les ubacs. Un dégel de ces zones pourrait provoquer des éboulements importants.

EnSuisse, l'Office fédéral de l'environnement (OFEV) a publié une carte et une liste actualisée des zones habitées particulièrement menacées[27]. Les dangers d'éboulements existent surtout pour les localités qui se situent au fond des vallées. Parmi elles figure la commune de Zermatt, entourée par trois pans de montagne qui reposent sur du pergélisol. La liste mentionne également Saint-Moritz, Saas BalenetKandersteg. La probabilité qu'un gros événement se produise augmente avec la fonte croissante de la glace[28]. Le risque ne porte pas seulement sur le fait que d'importantes masses de roches se détachent, mais que celles-ci provoquent des réactions en chaîne qui pourraient engendrer des dégâts dans les zones habitées, comme ce fut le cas dans le Caucase. Dans cette région, en 2002, un effondrement rocheux de quelques millions de mètres cubes a entraîné tout un glacier avec lui, provoquant un gigantesque glissement de terrain qui a totalement détruit une vallée de plus de 33 km.

La fonte de la glace du pergélisol est susceptible de créer des thermokarsts, des phénomènes de solifluxion et des mouvements importants des sols, ce qui inquiète car de nombreuses constructions, ainsi que des oléoducs sont posés sans fondations sur ces sols. Des villes entières sont construites sur le pergélisol comme Iakoutsk posée sur trois cents mètres de sol et roches congelés, où la température moyenne annuelle a augmenté de °C en trente ans sans conséquence observable en profondeur à ce jour, selon l'Institut du pergélisol fondé dans cette ville.

Même si le sol ne fond pas, un réchauffement différentiel entre les couches superficielles et profondes de sol ou entre des éléments plus ou moins riches en eau des couches supérieures de sol pourrait provoquer des dégâts importants par dilatation différentielle[29].

Effets du réchauffement climatique[modifier | modifier le code]

Situation actuelle : dégel accéléré[modifier | modifier le code]

Le pergélisol arctique, qui renferme 1 500 milliards de tonnes de gaz à effet de serre, soit environ deux fois plus que dans l'atmosphère, est considéré comme « une bombe à retardement »[30],[31]. 40 % du pergélisol pourrait dégeler avant la fin du XXIe siècle selon une étude britannique de Nature Climate Change de 2017[32]. Il y a un consensus scientifique sur le fait que les phénomènes de fosses d'effondrement (telles que celle de l’île Herschel au Canada) ainsi que les émissions de mercure, de méthane[33] et de CO2[34] augmentent, y compris en hiver[35],[36] et augmenteront encore[37], mais le fonctionnement hivernal (octobre-avril) du géo-écosystème arctique (qui a une grande importance pour les modélisations) était encore trop mal compris pour que l'on puisse prévoir la date à partir de laquelle son dégel risque de s'emballer avec des effets climatiques et écotoxicologiques potentiellement catastrophiques.

Selon les indices disponibles en 2019, le pergélisol canadien dégèle avec une intensité qui n'était attendue dans certaines régions que vers 2090 ; et à l'échelle mondiale sa vitesse de dégel implique un risque « imminent » d'emballement ; c'est la conclusion d'une étude publiée en [37] par les membres du réseau mondial du pergélisol dans la revue Nature Climate Change (). Ce bilan s'appuie sur les résultats du suivi de plus de 100 sites arctiques, concluant que :

Par ailleurs les risques d'incendie de forêt boréale (taïga ; l'écosystème arctique terrestre le plus proche de la toundra) semblent en augmentation. Par exemple au Canada, la surface de taïga brûlée augmente globalement depuis les années 1960 (de 1 500 à 75 000 km2 brûlés selon l'année), avec un pic en juillet. La superficie des feux semble par contre en légère diminution au début des années 2000 (2000-2007)[49].

Le dégel du pergélisol menace de nombreuses infrastructures construites sur son sol ; il est notamment à l'origine du déversement de pétrole à Norilsk en 2020[32]. Selon une étude pilotée par Jan Hjort, de l'université d'Oulu en Finlande, parue en 2018 dans Nature Communications, « 70 % des infrastructures situées dans cette zone sont irrémédiablement menacées et quatre millions de personnes concernées »[32]. Sont notamment concernées Iakoutsk, plus grande ville construite sur le pergélisol, et la centrale nucléaire de Bilibino[32].

Parmi les solutions identifiées par l'ONG Drawdown, le recours à un pâturage accru des steppes du pergélisol est la solution la plus efficace à court terme pour endiguer le dégel du pergélisol[32].

Boucle de rétroaction positive[modifier | modifier le code]

Le dégel du pergélisol permet aux micro organismes de se développer et d'accéder à la matière organique fortement concentrée du sol. Selon les conditions environnementales (aérobie ou non), la dégradation de ces réserves conduit à la libération de CO2 et/ou de méthane. Ainsi, selon les niveaux de réchauffement global associés aux trajectoires climatiques du GIEC et les réponses écosystémiques des régions polaires et boréales. Les taux annuels d'émissions varient ainsi de 0.45 gigatonnes équivalent CO2 par an à 3 gigatonnes équivalent CO2 par an d'ici la fin du 21ème siècle[50].

C'est un cercle vicieux puisque les gaz à effet de serre accélèrent le réchauffement de la planète et le réchauffement de la planète augmente le dégel du pergélisol. C'est ce qu'on appelle une boucle de rétroaction positive[51].

Une équipe de chercheurs du CNRS et de l'université Laval de Québec étudie cette boucle de rétroaction, dans le programme APT (acceleration of permafrost thaw (« accélération du dégel du pergélisol »)), afin d'en évaluer l'ampleur : la quantité de carbone contenue dans le pergélisol est estimée à deux fois celle présente dans l'atmosphère [52]; estimer la part de ce carbone qui sera relarguée dans l'atmosphère par les bactéries est donc essentiel[53].

Le dégel total du pergélisol pourrait augmenter la température moyenne planétaire de 1 à 12 °C[54].

Modification des écosystèmes[modifier | modifier le code]

Virus[modifier | modifier le code]

Le pergélisol renferme de nombreux virus, oubliés ou inconnus[30]. En 2014, le professeur Jean-Michel Claverie et son équipe ont découvert dans le pergélisol deux virus géants, inoffensifs pour l'Homme, qu'ils ont réussi à réactiver[30]. Selon Jean-Michel Claverie, « cette découverte démontre que si on est capable de ressusciter des virus âgés de 30 000 ans, il n’y a aucune raison pour que certains virus beaucoup plus embêtants pour l’Homme, les animaux ou les plantes ne survivent pas également plus de 30 000 ans »[30]. En 2016, en Sibérie, des spores d'anthrax vieilles de 70 ans se sont libérées du cadavre d'un renne après le dégel d'une couche de pergélisol, causant la mort d'un enfant et de nombreux troupeaux de rennes[30],[55]. Selon Philippe Charlier, médecin légiste et archéo-anthropologue, « les deux souches de ce bacille étudiées par les scientifiques remontaient au XVIIIe et au début du XXe siècle »[55]. Jean-Michel Claverie impute ce drame au réchauffement climatique, relevant qu'« en 2016, la couche dégelée a été plus profonde que les années précédentes »[30]. Philippe Charlier estime que « pour l’instant, la résurgence se fait de manière locale, mais elle pourrait se répandre à l’ensemble de la planète »[55]. Selon le virologiste Jean-Claude Manuguerra, « le risque pourrait venir des expériences de l’homme. Le danger serait de pouvoir reconstituer des virus disparus à partir de virus morts »[55].

Impact des exploitations minières[modifier | modifier le code]

Des côtes et régions de la Sibérie, auparavant désertiques et maintenant accessibles grâce au réchauffement climatique, recèlent d’importants gisements de gaz et de pétrole, ainsi que des métaux précieux comme l'or ou les diamants[30]. Suivant la volonté politique du président russe Vladimir Poutine, des mines à ciel ouvert, d'une taille de trois à quatre kilomètres de diamètre et jusqu’à un kilomètre de profondeur, ont été ouvertes pour exploiter ces gisements en retirant le pergélisol[30]. Le professeur Jean-Michel Claverie soulève en 2016 que cette exploitation conduit à manipuler des choses auxquelles l'homme n’a jamais été exposé, et accuse les exploitants russes de ne prendre « aucune précaution bactériologique »[30].

Effets écopaysagers du dégel du pergélisol[modifier | modifier le code]

En fondant, le pergélisol modifie le trait de côte (ici d'Alaska), libère du méthane et du mercure accumulé dans la matière organique ce qui favorise la méthylation du mercure en le rendant plus bioassimilable et toxique
(Photo:U.S. Geological Survey)

Le dégel croissant du pergélisol a de nombreux effets sur les écosystèmes et le paysage :

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

  • Réchauffement climatique dans l'Arctique
  • Relargage du méthane de l'Arctique
  • Une vérité qui dérange
  • Cryosol
  • Mollisol
  • Alass
  • Cryoturbation
  • Glace
  • Talik
  • Thermokarst
  • Liens externes[modifier | modifier le code]

  • Notices dans des dictionnaires ou encyclopédies généralistesVoir et modifier les données sur Wikidata :
  • Den Store Danske Encyklopædi
  • L'Encyclopédie canadienne
  • Store norske leksikon
  • Ressource relative à la santéVoir et modifier les données sur Wikidata :
  • Pergélisol sur L'Encyclopédie canadienne
  • Carte du pergélisol en Union soviétique (décembre 1984)
  • Commission géologique du Canada
  • « Pergélisol : le dégel qui nous glace », La Science, CQFD, France Culture, 2 février 2023.
  • Notes et références[modifier | modifier le code]

    Notes[modifier | modifier le code]

    1. L'expression employée en russe est similaire : вечная мерзлота/vetchnaïa merzlota (« gel éternel »).

    Références[modifier | modifier le code]

  • aetb Elizabeth Kolbert, « Dans l’Arctique en plein dégel », Courrier international, no 766, , [lire en ligne].
  • aetb Alain Foucault et Jean-François Raoult, Dictionnaire de Géologie - 7e édition, Dunod, , 416 p. (ISBN 978-2-10-055588-8, lire en ligne), p. 267.
  • Nicola Deluigi, « [Modélisation de la répartition du pergélisol alpin à l'aide de l'apprentissage automatique] », Institut de géographie, Université de Lausanne, janvier 2012.
  • Roland Souchez, Glaces polaires et évolution de l’atmosphère, Académie royale de Belgique, .
  • site du réseau mondial de surveillance terrestre du pergélisol, publié 05 février 2018.
  • « Le pergélisol fond si rapidement dans l'Arctique que les scientifiques perdent leur équipement », sur Reporterre (consulté le ).
  • Des centaines de milliards de tonnes de CO2 libérées brutalement dans l’atmosphère ?, .
  • (en) R. D. Miller, Freezing phenomena in soils, in Applications of Soil Physics, édité par D. Hillel, Elsevier, New York, 1980, p. 254–289.
  • (en) E. J. A. Spaans, J. M. Baker, The soil freezing characteristic : Its measurement and similarity to the soil moisture characteristic, Soil Sci. Soc. Am. J., 1996, no 60, p. 13–19.
  • (en) J. G. Dash, H. Fu, J. S. Wettlaufer, The premelting of ice and its environmental consequences, Rep. Prog. Phys., 1995, no 58, p. 115–167, doi:10.1088/0034-4885/58/1/003.
  • (en) P. Williams, Unfrozen water content of frozen soil and soil moisture suction, in Geotechnique, no 14, 1964, p. 231–246.
  • Flerchinger, G. N., M. S. Seyfried, and S. P. Hardegree (2006), Using soil freezing characteristics to model multi-season soil water dynamics, Vadose Zone J., 5, 1143–1153.
  • (en) K. Horiguchi, R. D. Miller, Hydraulic conductivity of frozen earth materials, in Proceedings of the 4th International Conference on Permafrost, 1983, p. 504–509, Natl. Acad. Press, Washington, D.C.
  • Burt TP, Williams PJ. 1976. Hydraulic conductivity in frozen soils. Earth Surf Process. 1: 349-360.
  • Water resources research, vol. 44, W12402, doi:10.1029/2008WR007012, 2008, résumé, avec lien vers article complet.
  • (en) K. Watanabe, T. Wake, Hydraulic conductivity in frozen unsaturated soil, in Proceedings of the 9th International Conference on Permafrost, édité par D. L. Kane et K. M. Hinke, pp. 1927–1932, University of Alaska Fairbanks, Fairbanks, Alaska, 2008.
  • (en) T. J. Marshall, A relation between permeability and size distribution of pores, J. Soil Sci., no 9, 1958, p. 1–8, doi:10.1111/j.1365-2389.1958.tb01892.x.
  • (en) T. P. Burt, P. J.Williams, Hydraulic conductivity in frozen soils, Earth Surf. Processes, no 1, 1976, p. 349–360, doi:10.1002/esp.3290010404.
  • (en) E.C. Childs, N. Collis-George, The permeability of porous materials, Proc. R. Soc. London, Ser. A, no 201, 1950, p. 392–405, doi:10.1098/ rspa.1950.0068
  • (en) K. Hansson, J. S ˇ imu°nek, M. Mizoguchi, L.-C. Lundin, M. T. van Genuchten, Water flow and heat transport in frozen soil : Numerical solution and freeze-thaw applications, Vadose Zone J., no 3, 2004, p. 693–704
  • (en) Y. W. Jame, D. I. Norum, Heat and mass transfer in freezing unsaturated porous media, Water Resour. Res., no 16, 1980, p. 811–819
  • (en) G. P. Newman, G. W. Wilson, Heat and mass transfer in unsaturated soils during freezing, Can. Geotech. J., no 34, 1997, p. 63–70, doi:10.1139/cgj-34-1-63.
  • (en) M. Stähli, P.-E. Jansson, L.-C. Lundin, Soil moisture redistribution and infiltration in frozen sandy soils, Water Resour. Res., no 35, 1999, p. 95–103
  • NASA
  • Katey Walter Anthony, Méthane, un péril fait surface, Pour la Science, no 390, avril 2010, p. 73.
  • « Carte indicative du permafrost en Suisse » [PDF], sur Conseil fédéral suisse, Office fédéral de l'environnement, .
  • « Dangers naturels et changements climatiques », sur Office fédéral de l'environnement (consulté le ).
  • La « mine climatique » de la merzlota risque-t-elle d'exploser? Article de RIA Novosti 2 janvier 2008.
  • a b c d e f g heti Boris Loumagne, « CO2 et virus oubliés : le permafrost est « une boîte de Pandore » », sur France Culture, (consulté le ).
  • aetb Hugelius, G. E.A (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593.
  • a b c dete Rachel Mulot, « La fonte du permafrost menace la planète », sur sciencesetavenir.fr, (consulté le ).
  • Zona, D. et al. (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc. Natl Acad. Sci. USA 113, 40–45.
  • Webb E.E et al. (2016) Increased wintertime CO2 loss as a result of sustained tundra warming. Biogeosciences 121, 1–17
  • Natali S.M et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015),
  • Parazoo, N., Commane, R., Wofsy, S. C. & Koven, C. D. Detecting regional patterns of changing CO2 flux in Alaska. Proc. Natl Acad. Sci. USA 113, 7733–7738 (2016).
  • a b c d eetf Susan M. Natali, Jennifer D. Watts, […] Donatella Zona (2019) [Large loss of CO2 in winter observed across the northern permafrost region] |Nature Climate Change | URL: https://www.nature.com/articles/s41558-019-0592-8 ; Data : https://doi.org/10.3334/ORNLDAAC/1692. Monthly carbon flux maps (25 km, October–April, 2003–2018; 2018–2100 for RCP 4.5 and RCP 8.5) are available at https://doi.org/10.3334/ORNLDAAC/1683.
  • Fisher J.B et al. (2014) Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences 11, 4271–4288
  • Commane R et al. (2017) Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366
  • Huang, J (2017) Recently amplified Arctic warming has contributed to a continual global warming trend. Nat. Clim. Change 7, 875–879 (résumé) .
  • Koenigk T et al. (2013) Arctic Climate Change in 21st century CMIP5 simulations with EC-Earth. Clim. Dynam. 40, 2719–2743
  • Cohen J et al. (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637.
  • Forkel M et al. (2016) Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699
  • Starr G & Oberbauer S.F (2003) Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology, 84(6), 1415-1420 (résumé)
  • Belshe E.F, Schuur E.A.G & Bolker B.M (2013) Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 16, 1307–1315
  • Koven, C. D. et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 .
  • chuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
  • Paul Voosen (2019) Global impacts of thawing Arctic permafrost may be imminent Nature News
  • Krezek-Hanes, C. C., Ahern, F., Cantin, A., & Flannigan, M. D. (2011). Tendances des grands incendies de forêts au Canada, de 1959 à 2007.
  • (en) Edward A.G. Schuur, Benjamin W. Abbott, Roisin Commane et Jessica Ernakovich, « Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic », Annual Review of Environment and Resources, vol. 47, no 1,‎ , p. 343–371 (ISSN 1543-5938et1545-2050, DOI 10.1146/annurev-environ-012220-011847, lire en ligne, consulté le )
  • (en-GB) « Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted », The Guardian,‎ (ISSN 0261-3077, lire en ligne, consulté le ).
  • G. Hugelius, J. Strauss, S. Zubrzycki et J. W. Harden, « Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps », Biogeosciences, vol. 11, no 23,‎ , p. 6573–6593 (ISSN 1726-4189, DOI 10.5194/bg-11-6573-2014, lire en ligne, consulté le )
  • Yann Verdo, Climat : la grande menace du permafrost, Les Échos, .
  • Julie Lacaze et Florent Dominé, « Les conséquences du dégel sur le sol de l'Arctique », National Geographic (consulté le ).
  • a b cetd Laureline Dubuy, Philippe Charlier et Jean-Claude Manuguerra, « Faut-il craindre la résurgence de virus et de bactérie disparus, avec le dégel du permafrost ? », sur La Croix, (consulté le ).
  • Finger, R.; Euskirchen, E. S.; Turetsky, M. (2013), Effects of permafrost thaw on nitrogen availability and plant nitrogen acquisition in Interior Alaska ; American Geophysical Union, Fall Meeting, ; publié en décembre 2013 (résumé, notice)
  • Rebecca A. Finger, Merritt R. Turetsky, Knut Kielland, Roger W. Ruess, Michelle C. Mack and Eugénie S. Euskirchen (2016) Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland, décembre 2014, et article (pages 1542–1554) ; mis en ligne 6 SEP 2016 | DOI: 10.1111/1365-2745.12639, consulté 2016-10-24
  • Mooney Chris (2018) The Arctic is full of toxic mercury, and climate change is going to release it ; Washington Post
  • Langin K (2018) Millions of tons of trapped mercury could be released as world warms publié le 06 février 2018
  • Chuster et al. (2018) Permafrost Stores a Globally Significant Amount of Mercury, Geophysicoal reserach ; étude pilotée par Paul Schust (scientifique à l'US Geological Survey), co-écrite par 16 autres chercheurs (fédéraux, universitaires et indépendants des Etats-Unis), basée sur des analyses de carottages de pergélisols réalisées sur 15 zones de pergélisol d'Alaska

  • Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Pergélisol&oldid=215466089 ».

    Catégories: 
    Climatologie
    Pédologie
    Géomorphologie en milieu périglaciaire
    Cryobiologie
    Catégories cachées: 
    Article à référence nécessaire
    Article contenant un appel à traduction en anglais
    Article de Wikipédia avec notice d'autorité
    Page utilisant P1417
    Page utilisant P8313
    Page utilisant P5395
    Page utilisant P4342
    Page pointant vers des bases externes
    Page pointant vers des dictionnaires ou encyclopédies généralistes
    Page utilisant P486
    Page pointant vers des bases relatives à la santé
    Portail:Sciences de la Terre et de l'Univers/Articles liés
    Portail:Sciences/Articles liés
    Portail:Arctique/Articles liés
    Portail:Sibérie/Articles liés
    Portail:Asie/Articles liés
    Portail:Russie/Articles liés
    Bon article en anglais
    Article de qualité en hébreu
     



    La dernière modification de cette page a été faite le 28 mai 2024 à 18:50.

    Droit d'auteur : les textes sont disponibles sous licence Creative Commons attribution, partage dans les mêmes conditions ; dautres conditions peuvent sappliquer. Voyez les conditions dutilisation pour plus de détails, ainsi que les crédits graphiques. En cas de réutilisation des textes de cette page, voyez comment citer les auteurs et mentionner la licence.
    Wikipedia® est une marque déposée de la Wikimedia Foundation, Inc., organisation de bienfaisance régie par le paragraphe 501(c)(3) du code fiscal des États-Unis.



    Politique de confidentialité

    À propos de Wikipédia

    Avertissements

    Contact

    Code de conduite

    Développeurs

    Statistiques

    Déclaration sur les témoins (cookies)

    Version mobile



    Wikimedia Foundation
    Powered by MediaWiki