RNARNA: transfer RNAtRNA[1]7690[2]RNAmRNARNARNAtRNAsRNAsoluble RNAtRNARNARNAmRNA3tRNA3mRNAtRNA
tRNA
識別
略称 t
Rfam RF00005
その他のデータ
リボ核酸の種類 gene, tRNA
PDB構造 PDBe 3icq, 1asy, 1asz, 1il2, 2tra, 3tra, 486d, 1fir, 1yfg, 3eph, 3epj, 3epk, 3epl, 1efw, 1c0a, 2ake, 2azx, 2dr2, 1f7u, 1f7v, 3foz, 2hgp, 2j00, 2j02, 2ow8, 2v46, 2v48, 2wdg, 2wdh, 2wdk, 2wdm, 2wh1

概要

編集
 
タンパク質合成におけるtRNAとmRNAの相互作用を示す、翻訳のイメージ図。リボソーム (ribosome) は、一連の伝令RNA (messenger RNA) を読み取りながら移動し、転移RNA (tRNA) に結びついたアミノ酸 (amino acid) から所定のタンパク質 (peptide chain) を組み立てる。

mRNAmRNAtRNA[3]mRNAtRNAtRNA3mRNA3

tRNAtRNA1tRNAtRNA

tRNA3'tRNAtRNAtRNAmRNA沿tRNAmRNAtRNA3'tRNA3'tRNAtRNAtRNAtRNA[4]

構造

編集
 
tRNAPhe () 
 
tRNACCADT
 
-tRNAPDB ID 1ehz3DGIF[5]

tRNAcloverleaf structuretRNAPAL[6]RNAL tRNA[6][7]tRNA

5

5



L53CCA 379bp3tRNAgenomic tags=[6][8]

3CCA

CCAtRNA3--tRNAtRNAtRNACCA3[9]tRNA[10][11]tRNACCAtRNAtRNACCAtRNA[12]

D

D46 bpL[6]



5 bp[6]LtRNA5'3'mRNA5335

T

T45 bpTΨCΨ[6]L



tRNA:  tRNA(-N7)-)-wobble-position-5-5--2-[13]

アンチコドン

編集

anticodon3mRNA3[14]tRNA313mRNA[4]:29.3.9 (en:) 431GGUGGCGGAGGGwobble position[15]61tRNA1161tRNA61tRNA6131tRNA[3][16]

アミノアシル化

編集

tRNACCA 3tRNAtRNA1tRNA1tRNAtRNA[17]



(一) + ATP  AMP + PPi

(二)AMP + tRNA  tRNA + AMP

1tRNAtRNA1使tRNAtRNAtRNAtRNA-tRNAGlnGln-tRNAGln

tRNAtRNALysCUUtRNA[18]EtRNA[19]tRNA

リボソームへの結合

編集
リボソーム上のA/TサイトからP/Eサイトへと移動する際にtRNAがとる立体構造の範囲を示すアニメーション動画。Protein Data Bank (PDB) コードは、アニメーションの終点に用いた構造モデルのものである。どのtRNAも大腸菌由来フェニルアラニン特異的tRNAとしてモデリングされており、A/T tRNAに関しては登録構造のホモロジーモデリングによって作成されたものである。色分けは、tRNAの三次構造における各部位を示す。引用元[20]

2tRNAAaminoacyl[21]PpeptidylEexit3mRNA使tRNA2TEF-TuIinitiation[22][23]tRNAAA/APP/PEE/E[22]APL27L2L14L15L16A. P. Czernilofsky et al.Proc. Natl. Acad. Sci, USA, pp. 230234, 1974

tRNAP/PtRNATuEF-TueEF-1aEF-1tRNAA/TA/TAmRNAmRNAmRNATEF-TueEF-1mRNAtRNAA/A[24]A/AtRNAtRNAP/PP/PtRNA3'A/AtRNAtRNAA/PP/EP/PE/EA/AP/PtRNAP/PE/EmRNA1A/TmRNAE/EtRNA

tRNAP/IIF2[23]P/IPL27E. Collatz and A. P. CzernilofskyFEBS Lett., Vol. 63, pp. 283286, 1976

tRNA遺伝子

編集

tRNAC. elegans29,647[25]620tRNA[26][27]Saccharomyces cerevisiae275tRNA

2013120,848[28]tRNA497tRNAtRNA[29]324tRNA[30]22tRNA[31][]MELAStRNAtRNA-lookalikestRNA[32]tRNADNA[32][33]tRNA[34]

tRNA4922Y16140tRNA[29]

HGNCtRNAGtRNAdbtRNA

進化

編集

tRNAT5'3'CCADRNAtRNA3RNAgenomic tag hypothesistRNAtRNARNA[35]

tRNAtRNA[36]2tRNAisoacceptorstRNA[]

tRNAtRNAtRNA[36]tRNAAla4tRNAAGCUGCGGCCGCAGCAI2tRNA使tRNA使tRNA[36]

tRNA64tRNA14tRNA[37]tRNAwobblingtRNA/mRNA[38]tRNA[39]3tRNA3tRNA調[40]

tRNA由来フラグメント

編集

tRNAtRNA-derived fragmentstRFtRNA[41][42][43][44]tRNAtRNA[45]tRNAtRFtRNA5'-tRF3'-tRFi-tRF4[41][45][46]tRNA5'3'DicerRNase ZRNase P[41][42]tRF3'5'[47]tRFRNAtRNAtRNAtiRNApiRNA[48]

tRF[45][49][50]AgoRNAi[43][46][51][52]RNAmRNA[53][54]4tRFtRF[55][46][47]調[56]

tRF[46][57][58][59]

tRF2tRNA (MINTbase) [60][61]RNA (tRFdb) [62]MINTbasetRF (MINTcodes)tRFRNA

合成tRNA

編集

tRNAUAGtRNAmetYCUAtRNAfMet2tRNAengineered tRNAUAGtRNAtRNAUAG[63][64]tRNAAUG[63]

tRNAの生合成

編集

tRNARNAIIIpre-tRNA[65]RNAIIItRNA5調5-ICRD調A3-ICRT調B2[2][66][67]1tRNA+82130604[2][67]
 
tRNA--

pre-tRNApre-tRNAtRNA[68]tRNA[69]pre-tRNAtRNA--BHB[70]BHB53[70]5RNase P[71]3tRNase Z[72]Nanoarchaeum equitansRNase PtRNA5[73]3CCA[74]tRNALos1/Xpo-t[75][76]tRNA[77][78]

20213RNA[79][80]

歴史

編集

tRNARNAadaptor hypothesisCtRNA[81]19602R[82]1965W3[83]MtRNA[84][85]1974X21[86][87]

訳語について

編集

学術用語集では植物学編・遺伝学編が「転移RNA(運搬RNA)」、動物学編が「運搬RNA」としている(すべて増訂版)。JISの生体工学用語(K3610)では「転移RNA」である。一般には「転移RNA」の方が好んで用いられる傾向にあるが、高校教育では「運搬RNA」が用いられている。

参照項目

編集

脚注

編集


(一)^ Plescia OJ, Palczuk NC, Cora-Figueroa E, Mukherjee A, Braun W (October 1965). Production of antibodies to soluble RNA (sRNA). Proceedings of the National Academy of Sciences of the United States of America 54(4): 12811285. Bibcode: 1965PNAS...54.1281P. doi:10.1073/pnas.54.4.1281. PMC 219862. PMID 5219832. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC219862/. 

(二)^ abcSharp SJ, Schaack J, Cooley L, Burke DJ, Söll D (1985). Structure and transcription of eukaryotic tRNA genes. CRC Critical Reviews in Biochemistry 19(2): 107144. doi:10.3109/10409238509082541. PMID 3905254. 

(三)^ abCrick FH (December 1968). The origin of the genetic code. Journal of Molecular Biology 38(3): 367379. doi:10.1016/0022-2836(68)90392-6. PMID 4887876. 

(四)^ abStryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th ed.). San Francisco: W. H. Freeman. ISBN 978-0-7167-4955-4. https://www.ncbi.nlm.nih.gov/books/NBK21154/ 

(五)^ Transfer RNA (tRNA). Proteopedia.org. 2018117

(六)^ abcdefItoh Y, Sekine S, Suetsugu S, Yokoyama S (July 2013). Tertiary structure of bacterial serenocysteine tRNA. Nucleic Acids Research 41(13): 67296738. doi:10.1093/nar/gkt321. PMC 3711452. PMID 23649835. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711452/. 

(七)^ Goodenbour JM, Pan T (29 October 2006). Diversity of tRNA genes in eukaryotes. Nucleic Acids Research 34(21): 61376146. doi:10.1093/nar/gkl725. PMC 1693877. PMID 17088292. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693877/. 

(八)^ Jahn M, Rogers MJ, Söll D (July 1991). Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase. Nature 352 (6332): 258260. Bibcode: 1991Natur.352..258J. doi:10.1038/352258a0. PMID 1857423. 

(九)^ Ibba M, Soll D (June 2000). Aminoacyl-tRNA synthesis. Annual Review of Biochemistry 69(1): 617650. doi:10.1146/annurev.biochem.69.1.617. PMID 10966471. 

(十)^ Sprinzl M, Cramer F (1979). The -C-C-A end of tRNA and its role in protein biosynthesis. Progress in Nucleic Acid Research and Molecular Biology 22: 169. doi:10.1016/s0079-6603(08)60798-9. ISBN 978-0-12-540022-0. PMID 392600. 

(11)^ Green R, Noller HF (1997). Ribosomes and translation. Annual Review of Biochemistry 66: 679716. doi:10.1146/annurev.biochem.66.1.679. PMID 9242921. 

(12)^ Aebi M, Kirchner G, Chen JY, Vijayraghavan U, Jacobson A, Martin NC, Abelson J (September 1990). Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry 265 (27): 1621616220. doi:10.1016/S0021-9258(17)46210-7. PMID 2204621. 

(13)^ McCloskey JA, Nishimura S (November 1977). Modified nucleosides in transfer RNA. Accounts of Chemical Research 10(11): 403410. doi:10.1021/ar50119a004. 

(14)^ Felsenfeld G, Cantoni GL (May 1964). Use of thermal denaturation studies to investigate the base sequence of yeast serine sRNA. Proceedings of the National Academy of Sciences of the United States of America 51(5): 818826. Bibcode: 1964PNAS...51..818F. doi:10.1073/pnas.51.5.818. PMC 300168. PMID 14172997. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC300168/. 

(15)^ Suzuki T, Suzuki T (June 2014). A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Research 42(11): 73467357. doi:10.1093/nar/gku390. PMC 4066797. PMID 24831542. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066797/. 

(16)^ Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004). Molecular Biology of the Cell. WH Freeman: New York. 5th ed.[ISBN][]

(17)^ Schimmel P, Giegé R, Moras D, Yokoyama S (October 1993). An operational RNA code for amino acids and possible relationship to genetic code. Proceedings of the National Academy of Sciences of the United States of America 90(19): 87638768. Bibcode: 1993PNAS...90.8763S. doi:10.1073/pnas.90.19.8763. PMC 47440. PMID 7692438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC47440/. 

(18)^ Zhang R, Noordam L, Ou X, Ma B, Li Y, Das P, Shi S, Liu J, Wang L, Li P, Verstegen MM, Reddy DS, van der Laan LJ, Peppelenbosch MP, Kwekkeboom J, Smits R, Pan Q (January 2021). The biological process of lysine-tRNA charging is therapeutically targetable in liver cancer. Liver Int. 41(1): 206219. doi:10.1111/liv.14692. PMC 7820958. PMID 33084231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820958/. 

(19)^ Ou X, Ma B, Zhang R, Miao Z, Cheng A, Peppelenbosch MP, Pan Q (June 2020). A simplified qPCR method revealing tRNAome remodeling upon infection by genotype 3 hepatitis E virus. FEBS Letters 594 (12): 20052015. doi:10.1002/1873-3468.13764. PMID 32133647. 

(20)^ Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH (May 2011). Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332 (6032): 981984. Bibcode: 2011Sci...332..981D. doi:10.1126/science.1202692. PMC 3176341. PMID 21596992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176341/. 

(21)^ Konevega AL, Soboleva NG, Makhno VI, Semenkov YP, Wintermeyer W, Rodnina MV, Katunin VI (January 2004). Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 10(1): 90101. doi:10.1261/rna.5142404. PMC 1370521. PMID 14681588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370521/. 

(22)^ abAgirrezabala X, Frank J (August 2009). Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Quarterly Reviews of Biophysics 42(3): 159200. doi:10.1017/S0033583509990060. PMC 2832932. PMID 20025795. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832932/. 

(23)^ abAllen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (June 2005). The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121 (5): 703712. doi:10.1016/j.cell.2005.03.023. PMID 15935757. 

(24)^ Tirumalai MR, Rivas M, Tran Q, Fox GE (November 2021). The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 85(4): e0010421. doi:10.1128/MMBR.00104-21. PMC 8579967. PMID 34756086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579967/. 

(25)^ WormBase web site, http://www.wormbase.org Archived 2017-04-20 at the Wayback Machine., release WS187, date 25-Jan-2008.

(26)^ Spieth J, Lawson D (January 2006). Overview of gene structure. WormBook: 110. doi:10.1895/wormbook.1.65.1. PMC 4781370. PMID 18023127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4781370/. 

(27)^ Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM, Veres RC. (2004). Genetics: From Genes to Genomes 2nd ed. McGraw-Hill: New York. p. 264.

(28)^ Ensembl release 70 - Jan 2013 http://www.ensembl.org/Homo_sapiens/Info/StatsTable?db=core Archived 2013-12-15 at the Wayback Machine.

(29)^ abLander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, etal (February 2001). Initial sequencing and analysis of the human genome. Nature 409 (6822): 860921. Bibcode: 2001Natur.409..860L. doi:10.1038/35057062. PMID 11237011. https://deepblue.lib.umich.edu/bitstream/2027.42/62798/1/409860a0.pdf. 

(30)^ Rogers TE, Ataide SF, Dare K, Katz A, Seveau S, Roy H, Ibba M (2012). A pseudo-tRNA modulates antibiotic resistance in Bacillus cereus. PLOS ONE 7(7): e41248. Bibcode: 2012PLoSO...741248R. doi:10.1371/journal.pone.0041248. PMC 3399842. PMID 22815980. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399842/. 

(31)^ Ibid. p. 529.

(32)^ abTelonis AG, Loher P, Kirino Y, Rigoutsos I (2014). Nuclear and mitochondrial tRNA-lookalikes in the human genome. Frontiers in Genetics 5: 344. doi:10.3389/fgene.2014.00344. PMC 4189335. PMID 25339973. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189335/. 

(33)^ Ramos A, Barbena E, Mateiu L, del Mar González M, Mairal Q, Lima M, Montiel R, Aluja MP, Santos C (November 2011). Nuclear insertions of mitochondrial origin: Database updating and usefulness in cancer studies. Mitochondrion 11(6): 946953. doi:10.1016/j.mito.2011.08.009. PMID 21907832. 

(34)^ Telonis AG, Kirino Y, Rigoutsos I (2015). Mitochondrial tRNA-lookalikes in nuclear chromosomes: Could they be functional?. RNA Biol 12(4): 375380. doi:10.1080/15476286.2015.1017239. PMC 4615777. PMID 25849196. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615777/. 

(35)^ Nancy Maizels and Alan M. Weiner: The Genomic Tag Hypothesis  What Molecular Fossils Tell Us about the Evolution of tRNA, in: The RNA World, Second Edition. 1999 Cold Spring Harbor Laboratory Press ISBN 978-0-87969-561-3/99, PDF

(36)^ abcNovoa EM, Pavon-Eternod M, Pan T, Ribas de Pouplana L (March 2012). A role for tRNA modifications in genome structure and codon usage. Cell 149 (1): 202213. doi:10.1016/j.cell.2012.01.050. PMID 22464330. 

(37)^ Ou X, Peng W, Yang Z, Cao J, Wang M, Peppelenbosch MP, Pan Q, Cheng A (November 2020). Evolutionarily missing and conserved tRNA genes in human and avian.. Infect. Genet. Evol. 85: 104460. doi:10.1016/j.meegid.2020.104460. PMID 32679345. 

(38)^ Ou X, Cao J, Cheng A, Peppelenbosch MP, Pan Q (March 2019). Errors in translational decoding: tRNA wobbling or misincorporation?. PLOS Genetics 15(3): 29792986. doi:10.1371/journal.pgen.1008017. PMC 3158919. PMID 21930591. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158919/. 

(39)^ Ou X, Wang M, Mao S, Cao J, Cheng A, Zhu D, Chen S, Jia R, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Peppelenbosch MP, Pan Q (July 2018). Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Front. Cell. Infect. Microbiol. 8: 249. doi:10.3389/fcimb.2018.00249. PMC 6058041. PMID 30073153. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058041/. 

(40)^ van Warmerdam, T.. YourBioHelper.com. YourBioHelper. 2022925

(41)^ abcGebetsberger J, Polacek N (December 2013). Slicing tRNAs to boost functional ncRNA diversity. RNA Biology 10(12): 17981806. doi:10.4161/rna.27177. PMC 3917982. PMID 24351723. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917982/. 

(42)^ abShigematsu M, Honda S, Kirino Y (2014). Transfer RNA as a source of small functional RNA. Journal of Molecular Biology and Molecular Imaging 1(2): 8. PMC 4572697. PMID 26389128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572697/. 

(43)^ abSobala A, Hutvagner G (2011). Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdisciplinary Reviews: RNA 2(6): 853862. doi:10.1002/wrna.96. hdl:10453/18187. PMID 21976287. https://opus.lib.uts.edu.au/bitstream/10453/18187/1/2011002529.pdf. 

(44)^ Keam SP, Hutvagner G (November 2015). tRNA-Derived Fragments (tRFs): Emerging New Roles for an Ancient RNA in the Regulation of Gene Expression. Life 5(4): 16381651. doi:10.3390/life5041638. PMC 4695841. PMID 26703738. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695841/. 

(45)^ abcTelonis AG, Loher P, Honda S, Jing Y, Palazzo J, Kirino Y, Rigoutsos I (July 2015). Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6(28): 24797822. doi:10.18632/oncotarget.4695. PMC 4694795. PMID 26325506. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694795/. 

(46)^ abcdKumar P, Anaya J, Mudunuri SB, Dutta A (October 2014). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology 12: 78. doi:10.1186/s12915-014-0078-0. PMC 4203973. PMID 25270025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203973/. 

(47)^ abHonda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y (July 2015). Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proceedings of the National Academy of Sciences of the United States of America 112 (29): E3816E3825. Bibcode: 2015PNAS..112E3816H. doi:10.1073/pnas.1510077112. PMC 4517238. PMID 26124144. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517238/. 

(48)^ Schorn, AJ; Martienssen, R (October 2018). Tie-Break: Host and Retrotransposons Play tRNA.. Trends in Cell Biology 28(10): 793806. doi:10.1016/j.tcb.2018.05.006. PMC 6520983. PMID 29934075. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520983/. 

(49)^ Telonis AG, Rigoutsos I (March 2018). Race Disparities in the Contribution of miRNA Isoforms and tRNA-Derived Fragments to Triple-Negative Breast Cancer. Cancer Res 78(5): 114054. doi:10.1158/0008-5472.CAN-17-1947. PMC 5935570. PMID 29229607. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935570/. 

(50)^ Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I (Jun 2019). tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res 79(12): 303449. doi:10.1158/0008-5472.CAN-19-0789. PMC 6571059. PMID 30996049. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571059/. 

(51)^ Shigematsu M, Kirino Y (2015). tRNA-Derived Short Non-coding RNA as Interacting Partners of Argonaute Proteins. Gene Regulation and Systems Biology 9: 2733. doi:10.4137/GRSB.S29411. PMC 4567038. PMID 26401098. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567038/. 

(52)^ Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P (April 2010). Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. The Journal of Biological Chemistry 285 (14): 1095910968. doi:10.1074/jbc.M109.077560. PMC 2856301. PMID 20129916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856301/. 

(53)^ Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF (May 2015). Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell 161 (4): 790802. doi:10.1016/j.cell.2015.02.053. PMC 4457382. PMID 25957686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4457382/. 

(54)^ Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (August 2011). Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell 43(4): 613623. doi:10.1016/j.molcel.2011.06.022. PMC 3160621. PMID 21855800. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160621/. 

(55)^ Selitsky SR, Baran-Gale J, Honda M, Yamane D, Masaki T, Fannin EE, Guerra B, Shirasaki T, Shimakami T, Kaneko S, Lanford RE, Lemon SM, Sethupathy P (January 2015). Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Scientific Reports 5: 7675. Bibcode: 2015NatSR...5E7675S. doi:10.1038/srep07675. PMC 4286764. PMID 25567797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286764/. 

(56)^ Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (January 2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351 (6271): 391396. Bibcode: 2016Sci...351..391S. doi:10.1126/science.aad6780. PMC 4888079. PMID 26721685. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888079/. 

(57)^ Casas E, Cai G, Neill JD (2015). Characterization of circulating transfer RNA-derived RNA fragments in cattle. Frontiers in Genetics 6: 271. doi:10.3389/fgene.2015.00271. PMC 4547532. PMID 26379699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547532/. 

(58)^ Hirose Y, Ikeda KT, Noro E, Hiraoka K, Tomita M, Kanai A (July 2015). Precise mapping and dynamics of tRNA-derived fragments (tRFs) in the development of Triops cancriformis (tadpole shrimp). BMC Genetics 16: 83. doi:10.1186/s12863-015-0245-5. PMC 4501094. PMID 26168920. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501094/. 

(59)^ Karaiskos S, Naqvi AS, Swanson KE, Grigoriev A (September 2015). Age-driven modulation of tRNA-derived fragments in Drosophila and their potential targets. Biology Direct 10: 51. doi:10.1186/s13062-015-0081-6. PMC 4572633. PMID 26374501. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572633/. 

(60)^ Pliatsika V, Loher P, Telonis AG, Rigoutsos I (August 2016). MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. Bioinformatics 32(16): 24812489. doi:10.1093/bioinformatics/btw194. PMC 4978933. PMID 27153631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978933/. 

(61)^ Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I (January 2018). MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Research 46(D1) (D1): D152D159. doi:10.1093/nar/gkx1075. PMC 5753276. PMID 29186503. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753276/. 

(62)^ Kumar P, Mudunuri SB, Anaya J, Dutta A (January 2015). tRFdb: a database for transfer RNA fragments. Nucleic Acids Research 43(Database issue): D141-5. doi:10.1093/nar/gku1138. PMC 4383946. PMID 25392422. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383946/. 

(63)^ abVincent RM, Wright BW, Jaschke PR (April 2019). Measuring Amber Initiator tRNA Orthogonality in a Genomically Recoded Organism. ACS Synthetic Biology 8(4): 675685. doi:10.1021/acssynbio.9b00021. PMID 30856316. 

(64)^ Govindan A, Miryala S, Mondal S, Varshney U (November 2018). Development of Assay Systems for Amber Codon Decoding at the Steps of Initiation and Elongation in Mycobacteria. Journal of Bacteriology 200 (22). doi:10.1128/jb.00372-18. PMC 6199473. PMID 30181124. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199473/. 

(65)^ White RJ (March 1997). Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control?. Trends in Biochemical Sciences 22(3): 7780. doi:10.1016/S0968-0004(96)10067-0. PMID 9066256. 

(66)^ Sharp S, Dingermann T, Söll D (September 1982). The minimum intragenic sequences required for promotion of eukaryotic tRNA gene transcription. Nucleic Acids Research 10(18): 53935406. doi:10.1093/nar/10.18.5393. PMC 320884. PMID 6924209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC320884/. 

(67)^ abDieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (December 2007). The expanding RNA polymerase III transcriptome. Trends in Genetics 23(12): 614622. doi:10.1016/j.tig.2007.09.001. hdl:11381/1706964. PMID 17977614. 

(68)^ Tocchini-Valentini GD, Fruscoloni P, Tocchini-Valentini GP (December 2009). Processing of multiple-intron-containing pretRNA. Proceedings of the National Academy of Sciences of the United States of America 106 (48): 2024620251. Bibcode: 2009PNAS..10620246T. doi:10.1073/pnas.0911658106. PMC 2787110. PMID 19910528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787110/. 

(69)^ Abelson J, Trotta CR, Li H (May 1998). tRNA splicing. The Journal of Biological Chemistry 273 (21): 1268512688. doi:10.1074/jbc.273.21.12685. PMID 9582290. 

(70)^ abSoma A (2014). Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Frontiers in Genetics 5: 63. doi:10.3389/fgene.2014.00063. PMC 3978253. PMID 24744771. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978253/. 

(71)^ Frank DN, Pace NR (1998). Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annual Review of Biochemistry 67(1): 153180. doi:10.1146/annurev.biochem.67.1.153. PMID 9759486. 

(72)^ Ceballos M, Vioque A (2007). tRNase Z. Protein and Peptide Letters 14(2): 137145. doi:10.2174/092986607779816050. PMID 17305600. 

(73)^ Randau L, Schröder I, Söll D (May 2008). Life without RNase P. Nature 453 (7191): 120123. Bibcode: 2008Natur.453..120R. doi:10.1038/nature06833. PMID 18451863. 

(74)^ Weiner AM (October 2004). tRNA maturation: RNA polymerization without a nucleic acid template. Current Biology 14(20): R883-5. doi:10.1016/j.cub.2004.09.069. PMID 15498478. 

(75)^ Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D (February 1998). Identification of a tRNA-specific nuclear export receptor. Molecular Cell 1(3): 359369. doi:10.1016/S1097-2765(00)80036-2. PMID 9660920. 

(76)^ Arts GJ, Fornerod M, Mattaj IW (March 1998). Identification of a nuclear export receptor for tRNA. Current Biology 8(6): 305314. doi:10.1016/S0960-9822(98)70130-7. PMID 9512417. 

(77)^ Arts GJ, Kuersten S, Romby P, Ehresmann B, Mattaj IW (December 1998). The role of exportin-t in selective nuclear export of mature tRNAs. The EMBO Journal 17(24): 74307441. doi:10.1093/emboj/17.24.7430. PMC 1171087. PMID 9857198. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171087/. 

(78)^ Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T (August 2003). Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Molecular Biology of the Cell 14(8): 32663279. doi:10.1091/mbc.E02-11-0757. PMC 181566. PMID 12925762. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC181566/. 

(79)^ Kühnlein, Alexandra; Lanzmich, Simon A.; Brun, Dieter (2 March 2021). tRNA sequences can assemble into a replicator. eLife 10. doi:10.7554/eLife.63431. PMC 7924937. PMID 33648631. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924937/. 

(80)^ Maximilian, Ludwig (202143). Solving the Chicken-and-the-Egg Problem  "A Step Closer to the Reconstruction of the Origin of Life". SciTechDaily. https://scitechdaily.com/solving-the-chicken-and-the-egg-problem-a-step-closer-to-the-reconstruction-of-the-origin-of-life/ 202143 

(81)^ Kresge, Nicole; Simoni, Robert D.; Hill, Robert L. (October 7, 2005). The Discovery of tRNA by Paul C. Zamecnik. Journal of Biological Chemistry 280 (40): e37e39. doi:10.1016/S0021-9258(20)79029-0. https://www.jbc.org/article/S0021-9258(20)79029-0/abstract. 

(82)^ Clark BF (October 2006). The crystal structure of tRNA. Journal of Biosciences 31(4): 453457. doi:10.1007/BF02705184. PMID 17206065. http://www.ias.ac.in/jbiosci/oct2006/453.pdf. 

(83)^ Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (March 1965). Structure of a Ribonucleic Acid. Science 147 (3664): 14621465. Bibcode: 1965Sci...147.1462H. doi:10.1126/science.147.3664.1462. PMID 14263761. 

(84)^ Obituary. The New York Times (199174). 2022925

(85)^ The Nobel Prize in Physiology or Medicine 1968: Robert W. Holley  Facts. Nobel Prize Outreach AB (2022). 2022318

(86)^ Ladner JE, Jack A, Robertus JD, Brown RS, Rhodes D, Clark BF, Klug A (November 1975). Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proceedings of the National Academy of Sciences of the United States of America 72(11): 44144418. Bibcode: 1975PNAS...72.4414L. doi:10.1073/pnas.72.11.4414. PMC 388732. PMID 1105583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC388732/. 

(87)^ Kim SH, Quigley GJ, Suddath FL, McPherson A, Sneden D, Kim JJ, Weinzierl J, Rich A (January 1973). Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science 179 (4070): 285288. Bibcode: 1973Sci...179..285K. doi:10.1126/science.179.4070.285. PMID 4566654. 

外部リンク

編集

Template:Mitochondrial enzymes