微分幾何学

出典: フリー百科事典『ウィキペディア(Wikipedia)』
微分幾何から転送)

: Differentialgeometriedifferential geometry: Differentialtopologie: differential topology

[]


p-p-

[]


調


[]


19

便


微分幾何学の分野[編集]

リーマン幾何学[編集]

リーマン幾何学では、滑らかな多様体に線素の長さの概念を付け加えてごく微小な範囲ではユークリッド空間のような構造をあたえられたリーマン多様体が主要な研究対象となる。リーマン多様体上では関数の勾配、ベクトル場の発散や曲線の長さなど様々なユークリッド幾何の概念が(大域的な対称性を落とすことによって)一般化される。リーマン曲率テンソルがリーマン多様体の各点に対して定まり、これによって多様体がどれだけ平坦かをはかることができる。

リーマン多様体の概念をさらに一般化し、各点での接ベクトル空間にノルムが定義されている状況を考えるフィンスラー幾何学が得られる。

シンプレクティック幾何学[編集]

シンプレクティック幾何学では、シンプレクティック形式(つまり、非退化で反対称な2次閉形式)があたえられたシンプレクティック多様体(偶数次元でなければならない)が主要な研究対象になる。リーマン幾何学と異なり、次元が同じシンプレクティック多様体の局所的な構造はすべて同じになり(ダルブーの定理)、したがって本質的に問題になるのは大域的な構造だということになる。

複素幾何学[編集]

複素微分幾何では複素多様体が研究される。概複素構造とよばれる接ベクトル場準同型(つまり(1, 1) 型のテンソル)J: TM → TM でその自乗が -1 倍作用であるようなものを持つ実多様体 M は概複素多様体とよばれる。概複素多様体のうちで概複素構造 J の「ねじれ」を表すNijenhuisテンソル NJ が消えているようなものは複素多様体とよばれる。この条件は正則なアトラスの存在と同値になる。

複素多様体 (M, J) に対し、さらにリーマン計量g で概複素構造 J と両立するものを考え、g の「ねじれ」ω(X, Y) = g(JX, Y) が閉形式になっているならば (M, J, g) はケーラー多様体とよばれる。ケーラー多様体は特に複素多様体であり、またシンプレクティック多様体にもなっている。滑らかな複素代数多様体として様々なケーラー多様体の例があたえられる。

マキシム・コンツェビッチによるミラー対称性の定式化からはシンプレクティック幾何学と複素幾何学の間に対応がつくことが予想されている。

関連項目[編集]