Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Evolution of the Arabic digit  





2 Mathematics  



2.1  Basic calculations  



2.1.1  In decimal  









3 In science  



3.1  In psychology  







4 Classical antiquity  





5 Religion and mythology  



5.1  Judaism  





5.2  Christianity  





5.3  Islam  





5.4  Hinduism  





5.5  Eastern tradition  





5.6  Other references  







6 See also  





7 Notes  





8 References  














7







Ænglisc
Аԥсшәа
العربية
ܐܪܡܝܐ

Asturianu
Avañe'
Авар
Azərbaycanca
تۆرکجه
Basa Bali

 / Bân-lâm-gú
Башҡортса
Беларуская
Беларуская (тарашкевіца)
Bislama
Български

Bosanski
Brezhoneg
Català
Чӑвашла
Cebuano
Čeština
ChiShona
ChiTumbuka
Cymraeg
Dagbanli
Dansk
الدارجة
Deitsch
Deutsch
Eesti
Ελληνικά
Emiliàn e rumagnòl
Эрзянь
Español
Esperanto
Euskara
فارسی
Føroyskt
Français
Fulfulde
Furlan
Gaeilge
Galego
ГӀалгӀай

/Hak-kâ-ngî

Hausa
Հայերեն
Hrvatski
Bahasa Hulontalo
Igbo
Bahasa Indonesia
Interlingua
Iñupiatun
IsiXhosa
Íslenska
Italiano
עברית


 / کٲشُر
Қазақша
Ikirundi
Kiswahili
Коми
Kreyòl ayisyen
Kurdî
Лакку
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Limburgs
Lingála
Luganda
Lombard
Magyar
Македонски



مازِرونی
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ
Nāhuatl
Na Vosa Vakaviti
Nederlands

Napulitano
Nordfriisk
Norsk bokmål
Norsk nynorsk
ି
Oromoo
Oʻzbekcha / ўзбекча

پنجابی
پښتو
Перем коми
Polski
Português
Română
Runa Simi
Русский
Gagana Samoa

Scots
Sesotho sa Leboa
Shqip
Sicilianu
Simple English
Slovenčina
Slovenščina
Словѣньскъ / 
Ślůnski
Soomaaliga
کوردی
Sranantongo
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
ி
Taclit
Татарча / tatarça



Tshivenda
Türkçe
Türkmençe
Тыва дыл
Basa Ugi
Українська
اردو
Vahcuengh
Vepsän kel
Tiếng Vit

West-Vlams
Winaray
Wolof

Xitsonga
ייִדיש


 
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


← 6 7 8 →

−1 0 1 2 3 4 5 6 7 8 9

  • Integers
  • 0 10 20 30 40 50 60 70 80 90

    Cardinalseven
    Ordinal7th
    (seventh)
    Numeral systemseptenary
    Factorizationprime
    Prime4th
    Divisors1, 7
    Greek numeralΖ´
    Roman numeralVII, vii
    Greek prefixhepta-/hept-
    Latin prefixseptua-
    Binary1112
    Ternary213
    Senary116
    Octal78
    Duodecimal712
    Hexadecimal716
    Greek numeralZ, ζ
    Amharic
    Arabic, Kurdish, Persian٧
    Sindhi, Urdu۷
    Bengali
    Chinese numeral七, 柒
    Devanāgarī
    Telugu
    Tamil
    Hebrewז
    Khmer
    Thai
    Kannada
    Malayalam
    ArmenianԷ
    Babylonian numeral𒐛
    Egyptian hieroglyph𓐀
    Morse code_ _...

    7 (seven) is the natural number following 6 and preceding 8. It is the only prime number preceding a cube.

    As an early prime number in the series of positive integers, the number seven has greatly symbolic associations in religion, mythology, superstition and philosophy. The seven Classical planets resulted in seven being the number of days in a week.[1] 7 is often considered luckyinWestern culture and is often seen as highly symbolic. Unlike Western culture, in Vietnamese culture, the number seven is sometimes considered unlucky.[citation needed]

    Evolution of the Arabic digit[edit]

    In the beginning, Indians wrote 7 more or less in one stroke as a curve that looks like an uppercase ⟨J⟩ vertically inverted (ᒉ). The western Ghubar Arabs' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arabs developed the digit from a form that looked something like 6 to one that looked like an uppercase V. Both modern Arab forms influenced the European form, a two-stroke form consisting of a horizontal upper stroke joined at its right to a stroke going down to the bottom left corner, a line that is slightly curved in some font variants. As is the case with the European digit, the Cham and Khmer digit for 7 also evolved to look like their digit 1, though in a different way, so they were also concerned with making their 7 more different. For the Khmer this often involved adding a horizontal line to the top of the digit.[2] This is analogous to the horizontal stroke through the middle that is sometimes used in handwriting in the Western world but which is almost never used in computer fonts. This horizontal stroke is, however, important to distinguish the glyph for seven from the glyph for one in writing that uses a long upstroke in the glyph for 1. In some Greek dialects of the early 12th century the longer line diagonal was drawn in a rather semicircular transverse line.

    Onseven-segment displays, 7 is the digit with the most common graphic variation (1, 6 and 9 also have variant glyphs). Most calculators use three line segments, but on Sharp, Casio, and a few other brands of calculators, 7 is written with four line segments because in Japan, Korea and Taiwan 7 is written with a "hook" on the left, as ① in the following illustration.

    While the shape of the character for the digit 7 has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender (⁊), as, for example, in .

    Most people in Continental Europe,[3] Indonesia,[citation needed] and some in Britain, Ireland, and Canada, as well as Latin America, write 7 with a line through the middle (7), sometimes with the top line crooked. The line through the middle is useful to clearly differentiate the digit from the digit one, as the two can appear similar when written in certain styles of handwriting. This form is used in official handwriting rules for primary school in Russia, Ukraine, Bulgaria, Poland, other Slavic countries,[4] France,[5] Italy, Belgium, the Netherlands, Finland,[6] Romania, Germany, Greece,[7] and Hungary.[citation needed]

    Mathematics[edit]

    Seven, the fourth prime number, is not only a Mersenne prime (since 23 − 1 = 7) but also a double Mersenne prime since the exponent, 3, is itself a Mersenne prime.[8] It is also a Newman–Shanks–Williams prime,[9]aWoodall prime,[10]afactorial prime,[11] a Harshad number, a lucky prime,[12]ahappy number (happy prime),[13]asafe prime (the only Mersenne safe prime), a Leyland prime of the second kind and the fourth Heegner number.[14]

    A heptagon in Euclidean space is unable to generate uniform tilings alongside other polygons, like the regular pentagon. However, it is one of fourteen polygons that can fill a plane-vertex tiling, in its case only alongside a regular triangle and a 42-sided polygon (3.7.42).[29][30] This is also one of twenty-one such configurations from seventeen combinations of polygons, that features the largest and smallest polygons possible.[31][32]
    Otherwise, for any regular n-sided polygon, the maximum number of intersecting diagonals (other than through its center) is at most 7.[33]
    Seven of eight semiregular tilings are Wythoffian (the only exception is the elongated triangular tiling), where there exist three tilings that are regular, all of which are Wythoffian.[35] Seven of nine uniform colorings of the square tiling are also Wythoffian, and between the triangular tiling and square tiling, there are seven non-Wythoffian uniform colorings of a total twenty-one that belong to regular tilings (all hexagonal tiling uniform colorings are Wythoffian).[36]
    In two dimensions, there are precisely seven 7-uniform Krotenheerdt tilings, with no other such k-uniform tilings for k > 7, and it is also the only k for which the count of Krotenheerdt tilings agrees with k.[37][38]
    Graph of the probability distribution of the sum of two six-sided dice
    Also, the lowest known dimension for an exotic sphere is the seventh dimension, with a total of 28 differentiable structures; there may exist exotic smooth structures on the four-dimensional sphere.[49][50]
    Inhyperbolic space, 7 is the highest dimension for non-simplex hypercompact Vinberg polytopes of rank n + 4 mirrors, where there is one unique figure with eleven facets.[51] On the other hand, such figures with rank n + 3 mirrors exist in dimensions 4, 5, 6 and 8; not in 7.[52] Hypercompact polytopes with lowest possible rank of n + 2 mirrors exist up through the 17th dimension, where there is a single solution as well.[53]

    Basic calculations[edit]

    Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000
    7 × x 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 350 700 7000
    Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    7 ÷ x 7 3.5 2.3 1.75 1.4 1.16 1 0.875 0.7 0.7 0.63 0.583 0.538461 0.5 0.46
    x ÷ 7 0.142857 0.285714 0.428571 0.571428 0.714285 0.857142 1.142857 1.285714 1.428571 1.571428 1.714285 1.857142 2 2.142857
    Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13
    7x 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407
    x7 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000 19487171 35831808 62748517
    Radix 1 5 10 15 20 25 50 75 100 125 150 200 250 500 1000 10000 100000 1000000
    x7 1 5 137 217 267 347 1017 1357 2027 2367 3037 4047 5057 13137 26267 411047 5643557 113333117

    In decimal[edit]

    999,999 divided by 7 is exactly 142,857. Therefore, when a vulgar fraction with 7 in the denominator is converted to a decimal expansion, the result has the same six-digit repeating sequence after the decimal point, but the sequence can start with any of those six digits.[60] For example, 1/7 = 0.142857 142857... and 2/7 = 0.285714 285714....

    In fact, if one sorts the digits in the number 142,857 in ascending order, 124578, it is possible to know from which of the digits the decimal part of the number is going to begin with. The remainder of dividing any number by 7 will give the position in the sequence 124578 that the decimal part of the resulting number will start. For example, 628 ÷ 7 = 89+5/7; here 5 is the remainder, and would correspond to number 7 in the ranking of the ascending sequence. So in this case, 628 ÷ 7 = 89.714285. Another example, 5238 ÷ 7 = 748+2/7, hence the remainder is 2, and this corresponds to number 2 in the sequence. In this case, 5238 ÷ 7 = 748.285714.

    In science[edit]

    In psychology[edit]

    Classical antiquity[edit]

    The Pythagoreans invested particular numbers with unique spiritual properties. The number seven was considered to be particularly interesting because it consisted of the union of the physical (number 4) with the spiritual (number 3).[64] In Pythagorean numerology the number 7 means spirituality.

    References from classical antiquity to the number seven include:

    Audio 00:15:59 (full text)

    Religion and mythology[edit]

    Judaism[edit]

    The number seven forms a widespread typological pattern within Hebrew scripture, including:

    References to the number seven in Jewish knowledge and practice include:

    Christianity[edit]

    Following the tradition of the Hebrew Bible, the New Testament likewise uses the number seven as part of a typological pattern:

    Seven lampstands in The Vision of John on PatmosbyJulius Schnorr von Carolsfeld, 1860

    References to the number seven in Christian knowledge and practice include:

    Islam[edit]

    References to the number seven in Islamic knowledge and practice include:

    Hinduism[edit]

    References to the number seven in Hindu knowledge and practice include:

    Eastern tradition[edit]

    Other references to the number seven in Eastern traditions include:

    The Seven Lucky GodsinJapanese mythology

    Other references[edit]

    Other references to the number seven in traditions from around the world include:

    See also[edit]

    Notes[edit]

    1. ^ Carl B. Boyer, A History of Mathematics (1968) p.52, 2nd edn.
  • ^ Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 395, Fig. 24.67
  • ^ Eeva Törmänen (September 8, 2011). "Aamulehti: Opetushallitus harkitsee numero 7 viivan palauttamista". Tekniikka & Talous (in Finnish). Archived from the original on September 17, 2011. Retrieved September 9, 2011.
  • ^ "Education writing numerals in grade 1." Archived 2008-10-02 at the Wayback Machine(Russian)
  • ^ "Example of teaching materials for pre-schoolers"(French)
  • ^ Elli Harju (August 6, 2015). ""Nenosen seiska" teki paluun: Tiesitkö, mistä poikkiviiva on peräisin?". Iltalehti (in Finnish).
  • ^ "Μαθηματικά Α' Δημοτικού" [Mathematics for the First Grade] (PDF) (in Greek). Ministry of Education, Research, and Religions. p. 33. Retrieved May 7, 2018.
  • ^ Weisstein, Eric W. "Double Mersenne Number". mathworld.wolfram.com. Retrieved 2020-08-06.
  • ^ "Sloane's A088165 : NSW primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ "Sloane's A050918 : Woodall primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ "Sloane's A035497 : Happy primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ "Sloane's A003173 : Heegner numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-05.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers: a(n) as the binomial(n+1,2) equal to n*(n+1)/2 or 0 + 1 + 2 + ... + n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-02.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000396 (Perfect numbers k: k is equal to the sum of the proper divisors of k.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-02.
  • ^ Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Books. pp. 171–174. ISBN 0-14-008029-5. OCLC 39262447. S2CID 118329153.
  • ^ Sloane, N. J. A. (ed.). "Sequence A060283 (Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-02.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) is the number of partitions of n (the partition numbers).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-04-02.
  • ^ Heyden, Anders; Sparr, Gunnar; Nielsen, Mads; Johansen, Peter (2003-08-02). Computer Vision – ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28–31, 2002. Proceedings. Part II. Springer. p. 661. ISBN 978-3-540-47967-3. A frieze pattern can be classified into one of the 7 frieze groups...
  • ^ Grünbaum, Branko; Shephard, G. C. (1987). "Section 1.4 Symmetry Groups of Tilings". Tilings and Patterns. New York: W. H. Freeman and Company. pp. 40–45. doi:10.2307/2323457. ISBN 0-7167-1193-1. JSTOR 2323457. OCLC 13092426. S2CID 119730123.
  • ^ Sloane, N. J. A. (ed.). "Sequence A004029 (Number of n-dimensional space groups.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-30.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000040 (The prime numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-02-01.
  • ^ Weisstein, Eric W. "Heptagon". mathworld.wolfram.com. Retrieved 2020-08-25.
  • ^ Weisstein, Eric W. "7". mathworld.wolfram.com. Retrieved 2020-08-07.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000566 (Heptagonal numbers (or 7-gonal numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-09.
  • ^ Sloane, N. J. A. (ed.). "Sequence A003215". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  • ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 231. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  • ^ Jardine, Kevin. "Shield - a 3.7.42 tiling". Imperfect Congruence. Retrieved 2023-01-09. 3.7.42 as a unit facet in an irregular tiling.
  • ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 229–230. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  • ^ Dallas, Elmslie William (1855). "Part II. (VII): Of the Circle, with its Inscribed and Circumscribed Figures − Equal Division and the Construction of Polygons". The Elements of Plane Practical Geometry. London: John W. Parker & Son, West Strand. p. 134.
    "...It will thus be found that, including the employment of the same figures, there are seventeen different combinations of regular polygons by which this may be effected; namely, —
    When three polygons are employed, there are ten ways; viz., 6,6,63.7.423,8,243,9,183,10,153,12,124,5,204,6,124,8,85,5,10.
    With four polygons there are four ways, viz., 4,4,4,43,3,4,123,3,6,63,4,4,6.
    With five polygons there are two ways, viz., 3,3,3,4,43,3,3,3,6.
    With six polygons one way — all equilateral triangles [ 3.3.3.3.3.3 ]."
    Note: the only four other configurations from the same combinations of polygons are: 3.4.3.12, (3.6)2, 3.4.6.4, and 3.3.4.3.4.
  • ^ Poonen, Bjorn; Rubinstein, Michael (1998). "The Number of Intersection Points Made by the Diagonals of a Regular Polygon" (PDF). SIAM Journal on Discrete Mathematics. 11 (1). Philadelphia: Society for Industrial and Applied Mathematics: 135–156. arXiv:math/9508209. doi:10.1137/S0895480195281246. MR 1612877. S2CID 8673508. Zbl 0913.51005.
  • ^ Coxeter, H. S. M. (1999). "Chapter 3: Wythoff's Construction for Uniform Polytopes". The Beauty of Geometry: Twelve Essays. Mineola, NY: Dover Publications. pp. 326–339. ISBN 9780486409191. OCLC 41565220. S2CID 227201939. Zbl 0941.51001.
  • ^ Grünbaum, Branko; Shephard, G. C. (1987). "Section 2.1: Regular and uniform tilings". Tilings and Patterns. New York: W. H. Freeman and Company. pp. 62–64. doi:10.2307/2323457. ISBN 0-7167-1193-1. JSTOR 2323457. OCLC 13092426. S2CID 119730123.
  • ^ Grünbaum, Branko; Shephard, G. C. (1987). "Section 2.9 Archimedean and uniform colorings". Tilings and Patterns. New York: W. H. Freeman and Company. pp. 102–107. doi:10.2307/2323457. ISBN 0-7167-1193-1. JSTOR 2323457. OCLC 13092426. S2CID 119730123.
  • ^ Sloane, N. J. A. (ed.). "Sequence A068600 (Number of n-uniform tilings having n different arrangements of polygons about their vertices.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-09.
  • ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). "Tilings by Regular Polygons" (PDF). Mathematics Magazine. 50 (5). Taylor & Francis, Ltd.: 236. doi:10.2307/2689529. JSTOR 2689529. S2CID 123776612. Zbl 0385.51006.
  • ^ Pisanski, Tomaž; Servatius, Brigitte (2013). "Section 1.1: Hexagrammum Mysticum". Configurations from a Graphical Viewpoint. Birkhäuser Advanced Texts (1 ed.). Boston, MA: Birkhäuser. pp. 5–6. doi:10.1007/978-0-8176-8364-1. ISBN 978-0-8176-8363-4. OCLC 811773514. Zbl 1277.05001.
  • ^ Pisanski, Tomaž; Servatius, Brigitte (2013). "Chapter 5.3: Classical Configurations". Configurations from a Graphical Viewpoint. Birkhäuser Advanced Texts (1 ed.). Boston, MA: Birkhäuser. pp. 170–173. doi:10.1007/978-0-8176-8364-1. ISBN 978-0-8176-8363-4. OCLC 811773514. Zbl 1277.05001.
  • ^ Szilassi, Lajos (1986). "Regular toroids" (PDF). Structural Topology. 13: 74. Zbl 0605.52002.
  • ^ Császár, Ákos (1949). "A polyhedron without diagonals" (PDF). Acta Scientiarum Mathematicarum (Szeged). 13: 140–142. Archived from the original (PDF) on 2017-09-18.
  • ^ Sloane, N. J. A. (ed.). "Sequence A004031 (Number of n-dimensional crystal systems.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-30.
  • ^ Wang, Gwo-Ching; Lu, Toh-Ming (2014). "Crystal Lattices and Reciprocal Lattices". RHEED Transmission Mode and Pole Figures (1 ed.). New York: Springer Publishing. pp. 8–9. doi:10.1007/978-1-4614-9287-0_2. ISBN 978-1-4614-9286-3. S2CID 124399480.
  • ^ Sloane, N. J. A. (ed.). "Sequence A256413 (Number of n-dimensional Bravais lattices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-01-30.
  • ^ Messer, Peter W. (2002). "Closed-Form Expressions for Uniform Polyhedra and Their Duals" (PDF). Discrete & Computational Geometry. 27 (3). Springer: 353–355, 372–373. doi:10.1007/s00454-001-0078-2. MR 1921559. S2CID 206996937. Zbl 1003.52006.
  • ^ Massey, William S. (December 1983). "Cross products of vectors in higher dimensional Euclidean spaces" (PDF). The American Mathematical Monthly. 90 (10). Taylor & Francis, Ltd: 697–701. doi:10.2307/2323537. JSTOR 2323537. S2CID 43318100. Zbl 0532.55011. Archived from the original (PDF) on 2021-02-26. Retrieved 2023-02-23.
  • ^ Baez, John C. (2002). "The Octonions". Bulletin of the American Mathematical Society. 39 (2). American Mathematical Society: 152–153. doi:10.1090/S0273-0979-01-00934-X. MR 1886087. S2CID 586512.
  • ^ Behrens, M.; Hill, M.; Hopkins, M. J.; Mahowald, M. (2020). "Detecting exotic spheres in low dimensions using coker J". Journal of the London Mathematical Society. 101 (3). London Mathematical Society: 1173. arXiv:1708.06854. doi:10.1112/jlms.12301. MR 4111938. S2CID 119170255. Zbl 1460.55017.
  • ^ Sloane, N. J. A. (ed.). "Sequence A001676 (Number of h-cobordism classes of smooth homotopy n-spheres.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-02-23.
  • ^ Tumarkin, Pavel; Felikson, Anna (2008). "On d-dimensional compact hyperbolic Coxeter polytopes with d + 4 facets" (PDF). Transactions of the Moscow Mathematical Society. 69. Providence, R.I.: American Mathematical Society (Translation): 105–151. doi:10.1090/S0077-1554-08-00172-6. MR 2549446. S2CID 37141102. Zbl 1208.52012.
  • ^ Tumarkin, Pavel (2007). "Compact hyperbolic Coxeter n-polytopes with n + 3 facets". The Electronic Journal of Combinatorics. 14 (1): 1–36 (R69). doi:10.37236/987. MR 2350459. S2CID 221033082. Zbl 1168.51311.
  • ^ Tumarkin, P. V. (2004). "Hyperbolic Coxeter N-Polytopes with n+2 Facets". Mathematical Notes. 75 (6): 848–854. arXiv:math/0301133. doi:10.1023/b:matn.0000030993.74338.dd. MR 2086616. S2CID 15156852. Zbl 1062.52012.
  • ^ Antoni, F. de; Lauro, N.; Rizzi, A. (2012-12-06). COMPSTAT: Proceedings in Computational Statistics, 7th Symposium held in Rome 1986. Springer Science & Business Media. p. 13. ISBN 978-3-642-46890-2. ...every catastrophe can be composed from the set of so called elementary catastrophes, which are of seven fundamental types.
  • ^ Cohen, Henri (2007). "Consequences of the Hasse–Minkowski Theorem". Number Theory Volume I: Tools and Diophantine Equations. Graduate Texts in Mathematics. Vol. 239 (1st ed.). Springer. pp. 312–314. doi:10.1007/978-0-387-49923-9. ISBN 978-0-387-49922-2. OCLC 493636622. Zbl 1119.11001.
  • ^ Sloane, N. J. A. (ed.). "Sequence A116582 (Numbers from Bhargava's 33 theorem.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-03.
  • ^ Weisstein, Eric W. "Dice". mathworld.wolfram.com. Retrieved 2020-08-25.
  • ^ "Millennium Problems | Clay Mathematics Institute". www.claymath.org. Retrieved 2020-08-25.
  • ^ "Poincaré Conjecture | Clay Mathematics Institute". 2013-12-15. Archived from the original on 2013-12-15. Retrieved 2020-08-25.
  • ^ Bryan Bunch, The Kingdom of Infinite Number. New York: W. H. Freeman & Company (2000): 82
  • ^ Gonzalez, Robbie (4 December 2014). "Why Do People Love The Number Seven?". Gizmodo. Retrieved 20 February 2022.
  • ^ Bellos, Alex. "The World's Most Popular Numbers [Excerpt]". Scientific American. Retrieved 20 February 2022.
  • ^ Kubovy, Michael; Psotka, Joseph (May 1976). "The predominance of seven and the apparent spontaneity of numerical choices". Journal of Experimental Psychology: Human Perception and Performance. 2 (2): 291–294. doi:10.1037/0096-1523.2.2.291. Retrieved 20 February 2022.
  • ^ "Number symbolism – 7".
  • ^ "Nāṣir-i Khusraw", An Anthology of Philosophy in Persia, I.B.Tauris, pp. 305–361, 2001, doi:10.5040/9780755610068.ch-008, ISBN 978-1-84511-542-5, retrieved 2020-11-17
  • ^ [Quran 12:46 (Translated by Yusuf Ali)]
  • ^ Rajarajan, R.K.K. (2020). "Peerless Manifestations of Devī". Carcow Indological Studies (Cracow, Poland). XXII.1: 221–243. doi:10.12797/CIS.22.2020.01.09. S2CID 226326183.
  • ^ Rajarajan, R.K.K. (2020). "Sempiternal "Pattiṉi": Archaic Goddess of the vēṅkai-tree to Avant-garde Acaṉāmpikai". Studia Orientalia Electronica (Helsinki, Finland). 8 (1): 120–144. doi:10.23993/store.84803. S2CID 226373749.
  • ^ The Origin of the Mystical Number Seven in Mesopotamian Culture: Division by Seven in the Sexagesimal Number System
  • ^ "Encyclopædia Britannica "Number Symbolism"". Britannica.com. Retrieved 2012-09-07.
  • ^ Klimka, Libertas (2012-03-01). "Senosios baltų mitologijos ir religijos likimas". Lituanistica. 58 (1). doi:10.6001/lituanistica.v58i1.2293. ISSN 0235-716X.
  • ^ "Chapter I. The Creative Thesis of Perfection by William S. Sadler, Jr. – Urantia Book – Urantia Foundation". urantia.org. 17 August 2011.
  • ^ Yemaya. Santeria Church of the Orishas. Retrieved 25 November 2022
  • ^ Ergil, Leyla Yvonne (2021-06-10). "Turkey's talisman superstitions: Evil eyes, pomegranates and more". Daily Sabah. Retrieved 2023-04-05.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=7&oldid=1226209674"

    Categories: 
    Integers
    7 (number)
    Hidden categories: 
    CS1 Finnish-language sources (fi)
    Webarchive template wayback links
    CS1 Greek-language sources (el)
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Short description matches Wikidata
    Articles containing Urdu-language text
    Pages using infobox number with prime parameter
    All articles with unsourced statements
    Articles with unsourced statements from September 2021
    Articles needing additional references from May 2024
    All articles needing additional references
    Articles with unsourced statements from April 2024
    Articles with hAudio microformats
    Wikipedia articles needing clarification from November 2023
    Commons category link from Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 29 May 2024, at 06:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki