Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 In mathematics  



1.1  Properties of the number  



1.1.1  Prime sextuplets  





1.1.2  Unitary perfect number  







1.2  Right angle  





1.3  Icosahedral symmetry  



1.3.1  Solids  





1.3.2  Witting polytope  







1.4  Cutting an annulus  







2 Other fields  



2.1  In science  





2.2  In sports  







3 References  














90 (number)






Аԥсшәа
العربية
Արեւմտահայերէն
Azərbaycanca
تۆرکجه
 / Bân-lâm-gú
Bikol Central
Български

Català
Чӑвашла
Čeština
ChiShona
Dansk
Ελληνικά
Emiliàn e rumagnòl
Эрзянь
Español
Esperanto
Euskara
فارسی
Français
Fulfulde
Gaeilge


Hausa
Հայերեն
Bahasa Indonesia
Interlingua
Iñupiatun
Italiano
עברית

 / کٲشُر
Ikirundi
Kiswahili
Kreyòl ayisyen
Kurdî
Лакку
Latviešu
Lietuvių
Lingála
Luganda
Lombard
Magyar
ि
Македонски

مازِرونی
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ
Na Vosa Vakaviti
Nederlands

Napulitano
Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
پنجابی
پښتو
Polski
Português
Română
Русский
Sesotho sa Leboa
Sicilianu
Simple English
Slovenščina
Soomaaliga
کوردی
Sranantongo
Српски / srpski
Suomi
Svenska
Tagalog
Татарча / tatarça


Türkçe
Українська
اردو
Vahcuengh
Tiếng Vit
Winaray

ייִדיש


 
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


← 89 90 91 →

90 91 92 93 94 95 96 97 98 99

  • Integers
  • 0 10 20 30 40 50 60 70 80 90

    Cardinalninety
    Ordinal90th
    (ninetieth)
    Factorization2 × 32 × 5
    Divisors1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90
    Greek numeralϞ´
    Roman numeralXC
    Binary10110102
    Ternary101003
    Senary2306
    Octal1328
    Duodecimal7612
    Hexadecimal5A16
    ArmenianՂ
    Hebrewצ / ץ
    Babylonian numeral𒐕𒌍
    Egyptian hieroglyph𓎎

    90 (ninety) is the natural number following 89 and preceding 91.

    In the English language, the numbers 90 and 19 are often confused, as they sound very similar. When carefully enunciated, they differ in which syllable is stressed: 19 /naɪnˈtiːn/ vs 90 /ˈnaɪnti/. However, in dates such as 1999, and when contrasting numbers in the teens and when counting, such as 17, 18, 19, the stress shifts to the first syllable: 19 /ˈnaɪntiːn/.

    In mathematics[edit]

    Ninety is a pronic number as it is the productof9 and 10,[1] and along with 12 and 56, one of only a few pronic numbers whose digits in decimal are also successive. 90 is divisible by the sum of its base-ten digits, which makes it the thirty-second Harshad number.[2]

    Properties of the number[edit]

    The twelfth triangular number 78[9] is the only number to have an aliquot sum equal to 90, aside from the square of the twenty-fourth prime, 892 (which is centered octagonal).[10][11] 90 is equal to the fifth sum of non-triangular numbers, respectively between the fifth and sixth triangular numbers, 15 and 21 (equivalently 16 + 17 ... + 20).[12] It is also twice 45, which is the ninth triangular number, and the second-smallest sum of twelve non-zero integers, from two through thirteen .

    90 can be expressed as the sum of distinct non-zero squares in six ways, more than any smaller number (see image):[13]

    90 as the sum of distinct nonzero squares

    The square of eleven is the ninetieth indexed composite number,[14] where the sum of integers is65, which in-turn represents the composite index of 90.[14] In the fractional part of the decimal expansion of the reciprocal of 11inbase-10, "" repeats periodically (when leading zeroes are moved to the end).[15]

    The eighteenth Stirling number of the second kind is 90, from a of and a of, as the number of ways of dividing a set of six objects into three non-empty subsets.[16] 90 is also the sixteenth Perrin number from a sum of 39 and 51, whose difference is 12.[17]

    Prime sextuplets[edit]

    The members of the first prime sextuplet (7, 11, 13, 17, 19, 23) generate a sum equal to 90, and the difference between respective members of the first and second prime sextuplets is also 90, where the second prime sextuplet is (97, 101, 103, 107, 109, 113).[18][19] The last member of the second prime sextuplet, 113, is the 30th prime number. Since prime sextuplets are formed from prime members of lower order prime k-tuples, 90 is also a record maximal gap between various smaller pairs of prime k-tuples (which include quintuplets, quadruplets, and triplets).[a]

    Unitary perfect number[edit]

    90 is the third unitary perfect number (after 6 and 60), since it is the sum of its unitary divisors excluding itself,[20] and because it is equal to the sum of a subset of its divisors, it is also the twenty-first semiperfect number.[21]

    Right angle[edit]

    Aright angle measures ninety degrees.

    An angle measuring 90 degrees is called a right angle.[22] In normal space, the interior angles of a rectangle measure 90 degrees each, while in a right triangle, the angle opposing the hypotenuse measures 90 degrees, with the other two angles adding up to 90 for a total of 180 degrees.

    Icosahedral symmetry[edit]

    The Witting polytope, with ninety van Oss polytopes

    Solids[edit]

    The rhombic enneacontahedron is a zonohedron with a total of 90 rhombic faces: 60 broad rhombi akin to those in the rhombic dodecahedron with diagonals in ratio, and another 30 slim rhombi with diagonals in golden ratio. The obtuse angle of the broad rhombic faces is also the dihedral angle of a regular icosahedron, with the obtuse angle in the faces of golden rhombi equal to the dihedral angle of a regular octahedron and the tetrahedral vertex-center-vertex angle, which is also the angle between Plateau borders: °. It is the dual polyhedron to the rectified truncated icosahedron, a near-miss Johnson solid. On the other hand, the final stellation of the icosahedron has 90 edges. It also has 92 vertices like the rhombic enneacontahedron, when interpreted as a simple polyhedron. Meanwhile, the truncated dodecahedron and truncated icosahedron both have 90 edges. A further four uniform star polyhedra (U37, U55, U58, U66) and four uniform compound polyhedra (UC32, UC34, UC36, UC55) contain 90 edges or vertices.

    Witting polytope[edit]

    The self-dual Witting polytope contains ninety van Oss polytopes such that sections by the common plane of two non-orthogonal hyperplanes of symmetry passing through the center yield complex Möbius–Kantor polygons.[23] The root vectorsofsimple Lie group E8 are represented by the vertex arrangement of the polytope, which shares 240 vertices with the Witting polytope in four-dimensional complex space. By Coxeter, the incidence matrix configuration of the Witting polytope can be represented as:

    or

    This Witting configuration when reflected under the finite space splits into points and planes, alongside lines.[23]

    Whereas the rhombic enneacontahedron is the zonohedrification of the regular dodecahedron,[24]ahoneycomb of Witting polytopes holds vertices isomorphic to the lattice, whose symmetries can be traced back to the regular icosahedron via the icosian ring.[25]

    Cutting an annulus[edit]

    The maximal number of pieces that can be obtained by cutting an annulus with twelve cuts is 90 (and equivalently, the number of 12-dimensional polyominoes that are prime).[26]

    Other fields[edit]

    In science[edit]

    In sports[edit]

    References[edit]

    1. ^ 90 is the record gap between the first pair of prime quintuplets of the form (p, p+2, p+6, p+8, p+12) (A201073), while 90 is a record between the second and third prime quintuplets that have the form (p, p+4, p+6, p+10, p+12) (A201062). Regarding prime quadruplets, 90 is the gap record between the second and third set of quadruplets (A113404). Prime triplets of the form (p, p+4, p+6) have a third record maximal gap of 90 between the second and ninth triplets (A201596), and while there is no record gap of 90 for prime triplets of the form (p, p+2, p+6), the first and third record gaps are of 6 and 60 (A201598), which are also unitary perfect numbers like 90 (A002827).
    1. ^ "Sloane's A002378 : Oblong (or promic, pronic, or heteromecic) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ "Sloane's A005349 : Niven (or Harshad) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000203 (...the sum of the divisors of n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-30.
  • ^ Sloane, N. J. A. (ed.). "Sequence A005101 (Abundant numbers (sum of divisors of m exceeds 2m).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  • ^ Sloane, N. J. A. (ed.). "Sequence A002093 (Highly abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  • ^ Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000010 (Euler totient function phi(n): count numbers less than or equal to n and prime to n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-16.
  • ^ "Sloane's A005277 : Nontotients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-11-01.
  • ^ Sloane, N. J. A. (ed.). "Sequence A001065 (Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-30.
  • ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-07-02.
  • ^ Sloane, N. J. A. (ed.). "Sequence A006002 (...also: Sum of the nontriangular numbers between successive triangular numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A033461 (Number of partitions of n into distinct squares.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A02808 (The composite numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A060283 (Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ "Sloane's A008277 :Triangle of Stirling numbers of the second kind". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-12-24.
  • ^ "Sloane's A001608 : Perrin sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ Sloane, N. J. A. (ed.). "Sequence A022008 (Initial member of prime sextuples (p, p+4, p+6, p+10, p+12, p+16).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-11.
  • ^ Sloane, N. J. A. (ed.). "Sequence A200503 (Record (maximal) gaps between prime sextuplets (p, p+4, p+6, p+10, p+12, p+16).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-23.
  • ^ "Sloane's A002827 : Unitary perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ "Sloane's A005835 : Pseudoperfect (or semiperfect) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
  • ^ Friedman, Erich (n.d.). "What's Special About This Number?". www.stetson.edu. Archived from the original on February 23, 2018. Retrieved February 27, 2023.
  • ^ a b Coxeter, Harold Scott MacDonald (1974). Regular Complex Polytopes (1st ed.). Cambridge University Press. p. 133. ISBN 978-0-52-1201254.
  • ^ Hart, George W. "Zonohedrification". Virtual Polyhedra (The Encyclopedia of Polyhedra). Retrieved 2023-06-23.
  • ^ Baez, John C. (2018). "From the Icosahedron to E8". London Math. Soc. Newsletter. 476. London, UK: London Mathematical Society: 18–23. arXiv:1712.06436. Bibcode:2017arXiv171206436B. MR 3792329. S2CID 119151549. Zbl 1476.51020.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000096 (a(n) equal to n*(n+3)/2.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=90_(number)&oldid=1228983434"

    Category: 
    Integers
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 14 June 2024, at 06:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki