Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematics  





2 In science  



2.1  Astronomy  







3 In sports  





4 In other fields  





5 Notes  





6 References  





7 External links  














31 (number)






Аԥсшәа
العربية
Արեւմտահայերէն
Azərbaycanca
تۆرکجه
 / Bân-lâm-gú
Български

Català
Чӑвашла
Čeština
Dansk
الدارجة
Deutsch
Ελληνικά
Emiliàn e rumagnòl
Эрзянь
Español
Esperanto
Euskara
فارسی
Føroyskt
Français
Gaeilge


Hausa
Հայերեն
Bahasa Indonesia
Interlingua
Italiano
עברית

Kiswahili
Kreyòl ayisyen
Лакку
Latviešu
Luganda
Magyar
ि
Македонски

مازِرونی
Bahasa Melayu
 
 / Mìng-dĕ̤ng-nḡ
Nāhuatl
Na Vosa Vakaviti
Nederlands

Napulitano
Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча
پنجابی
پښتو
Polski
Português
Română
Русский
Sesotho sa Leboa
Simple English
Slovenščina
Soomaaliga
کوردی
Sranantongo
Српски / srpski
Suomi
Svenska
Татарча / tatarça

Türkçe
Тыва дыл
Українська
اردو
Vahcuengh
Vepsän kel
Tiếng Vit
West-Vlams
Winaray

ייִדיש


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


← 30 31 32 →

30 31 32 33 34 35 36 37 38 39

  • Integers
  • 0 10 20 30 40 50 60 70 80 90

    Cardinalthirty-one
    Ordinal31st
    (thirty-first)
    Factorizationprime
    Prime11th
    Divisors1, 31
    Greek numeralΛΑ´
    Roman numeralXXXI
    Binary111112
    Ternary10113
    Senary516
    Octal378
    Duodecimal2712
    Hexadecimal1F16

    31 (thirty-one) is the natural number following 30 and preceding 32. It is a prime number.

    Mathematics

    [edit]

    31 is the 11th prime number. It is a superprime and a self prime (after 3, 5, and 7), as no integer added up to its base 10 digits results in 31.[1] It is the third Mersenne prime of the form 2n − 1,[2] and the eighth Mersenne prime exponent,[3] in-turn yielding the maximum positive value for a 32-bit signed binary integerincomputing: 2,147,483,647. After 3, it is the second Mersenne prime not to be a double Mersenne prime, while the 31st prime number (127) is the second double Mersenne prime, following 7.[4] On the other hand, the thirty-first triangular number is the perfect number 496, of the form 2(5 − 1)(25 − 1) by the Euclid-Euler theorem.[5] 31 is also a primorial prime like its twin prime (29),[6][7] as well as both a lucky prime[8] and a happy number[9] like its dual permutable primeindecimal (13).[10]

    31 is the number of regular polygons with an odd number of sides that are known to be constructible with compass and straightedge, from combinations of known Fermat primes of the form 22n + 1 (they are 3, 5, 17, 257 and 65537).[11][12]

    31 is a centered pentagonal number.

    Only two numbers have a sum-of-divisors equal to 31: 16 (1 + 2 + 4 + 8 + 16) and 25 (1 + 5 + 25), respectively the squareof4, and of 5.[13]

    31 is the 11th and final consecutive supersingular prime.[14] After 31, the only supersingular primes are 41, 47, 59, and 71.

    31 is the first prime centered pentagonal number,[15] the fifth centered triangular number,[16] and the first non-trivial centered decagonal number.[17]

    For the Steiner tree problem, 31 is the number of possible Steiner topologies for Steiner trees with 4 terminals.[18]

    At 31, the Mertens function sets a new low of −4, a value which is not subceded until 110.[19]

    31 is a repdigit in base 2 (11111) and in base 5 (111).

    The cube root of 31 is the value of π correct to four significant figures:

    The thirty-first digit in the fractional part of the decimal expansion for pi in base-10 is the last consecutive non-zero digit represented, starting from the beginning of the expansion (i.e, the thirty-second single-digit string is the first );[20] the partial sum of digits up to this point is [21] 31 is also the prime partial sum of digits of the decimal expansion of pi after the eighth digit.[22][a]

    The first five Euclid numbers of the form p1 × p2 × p3 × ... × pn + 1 (with pn the nth prime) are prime:[24]

    The following term, 30031 = 59 × 509 = 2 × 3 × 5 × 7 × 11 × 13 + 1, is composite.[b] The next prime number of this form has a largest prime p of 31: 2 × 3 × 5 × 7 × 11 × 13 × ... × 31 + 1 ≈ 8.2 × 1033.[25]

    While 13 and 31 in base-ten are the proper first duo of two-digit permutable primes and emirps with distinct digits in base ten, 11 is the only two-digit permutable prime that is its own permutable prime.[10][26] Meanwhile 1310internary is 1113 and 3110inquinary is 1115, with 1310inquaternary represented as 314 and 3110 as 1334 (their mirror permutations 3314 and 134, equivalent to 61 and 7 in decimal, respectively, are also prime). (11, 13) form the third twin prime pair[6] between the fifth and sixth prime numbers whose indices add to 11, itself the prime index of 31.[27] Where 31 is the prime index of the fourth Mersenne prime,[2] the first three Mersenne primes (3, 7, 31) sum to the thirteenth prime number, 41.[27][c] 13 and 31 are also the smallest values to reach record lows in the Mertens function, of −3 and −4 respectively.[29]

    The numbers 31, 331, 3331, 33331, 333331, 3333331, and 33333331 are all prime. For a time it was thought that every number of the form 3w1 would be prime. However, the next nine numbers of the sequence are composite; their factorisations are:

    The next term (3171) is prime, and the recurrence of the factor 31 in the last composite member of the sequence above can be used to prove that no sequence of the type RwE or ERw can consist only of primes, because every prime in the sequence will periodically divide further numbers.[citation needed]

    31 is the maximum number of areas inside a circle created from the edges and diagonals of an inscribed six-sided polygon, per Moser's circle problem.[30] It is also equal to the sum of the maximum number of areas generated by the first five n-sided polygons: 1, 2, 4, 8, 16, and as such, 31 is the first member that diverges from twice the value of its previous member in the sequence, by 1.

    Icosahedral symmetry contains a total of thirty-one axes of symmetry; six five-fold, ten three-fold, and fifteen two-fold.[31]

    In science

    [edit]

    Astronomy

    [edit]

    In sports

    [edit]

    In other fields

    [edit]

    Thirty-one is also:

    Notes

    [edit]
    1. ^ On the other hand, "31" as a string represents the first decimal expansion of pi truncated to numbers such that the partial sums of the decimal digits are square numbers.[23]
  • ^ On the other hand, 13 is a largest p of a primorial prime of the form pn# − 1 = 30029 (sequence A057704 in the OEIS).
  • ^ Also, the sum between the sum and product of the first two Mersenne primes is (3 + 7) + (3 × 7) = 10 + 21 = 31, where its difference (11) is the prime index of 31.[27] Thirty-one is also in equivalence with 14 + 17, which are respectively the seventh composite[28] and prime numbers,[27] whose difference in turn is three.
  • References

    [edit]
    1. ^ "Sloane's A003052 : Self numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A000668 (Mersenne primes (primes of the form 2^n - 1).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000043 (Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ Sloane, N. J. A. (ed.). "Sequence A077586 (Double Mersenne primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ "Sloane's A000217 : Triangular numbers". The On-Line Encyclopedia oof Integer Sequences. OEIS Foundation. Retrieved 2022-09-30.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A228486 (Near primorial primes: primes p such that p+1 or p-1 is a primorial number (A002110))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ Sloane, N. J. A. (ed.). "Sequence A077800 (List of twin primes {p, p+2}.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ a b Sloane, N. J. A. (ed.). "Sequence A003459 (Absolute primes (or permutable primes): every permutation of the digits is a prime.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ Conway, John H.; Guy, Richard K. (1996). "The Primacy of Primes". The Book of Numbers. New York, NY: Copernicus (Springer). pp. 137–142. doi:10.1007/978-1-4612-4072-3. ISBN 978-1-4612-8488-8. OCLC 32854557. S2CID 115239655.
  • ^ Sloane, N. J. A. (ed.). "Sequence A004729 (... the 31 regular polygons with an odd number of sides constructible with ruler and compass)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-05-26.
  • ^ Sloane, N. J. A. (ed.). "Sequence A000203 (The sum of the divisors of n. Also called sigma_1(n).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-01-23.
  • ^ "Sloane's A002267 : The 15 supersingular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ "Sloane's A005891 : Centered pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ "Sloane's A005448 : Centered triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ "Sloane's A062786 : Centered 10-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
  • ^ Hwang, Frank. (1992). The Steiner tree problem. Richards, Dana, 1955-, Winter, Pawel, 1952-. Amsterdam: North-Holland. p. 14. ISBN 978-0-444-89098-6. OCLC 316565524.
  • ^ Sloane, N. J. A. (ed.). "Sequence A002321 (Mertens's function)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-07.
  • ^ Sloane, N. J. A. (ed.). "Sequence A072136 (Position of the first zero in the fractional part of the base n expansion of Pi.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-05-30.
  • ^ Sloane, N. J. A. (ed.). "Sequence A046974 (Partial sums of digits of decimal expansion of Pi.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  • ^ Sloane, N. J. A. (ed.). "Sequence A133213 (Prime partial sums of digits of decimal expansion of pi (A000796).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-06-02.
  • ^ Sloane, N. J. A. (ed.). "Sequence A276111 (Decimal expansion of Pi truncated to numbers such that the partial sums of the decimal digits are perfect squares.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-06-02.
  • ^ Sloane, N. J. A. (ed.). "Sequence A006862 (Euclid numbers: 1 + product of the first n primes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-10-01.
  • ^ Conway, John H.; Guy, Richard K. (1996). "The Primacy of Primes". The Book of Numbers. New York, NY: Copernicus (Springer). pp. 133–135. doi:10.1007/978-1-4612-4072-3. ISBN 978-1-4612-8488-8. OCLC 32854557. S2CID 115239655.
  • ^ Sloane, N. J. A. (ed.). "Sequence A006567 (Emirps (primes whose reversal is a different prime).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2023-06-16.
  • ^ a b c d Sloane, N. J. A. (ed.). "Sequence A00040 (The prime numbers.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-09.
  • ^ Sloane, N. J. A. (ed.). "Sequence A002808 (The composite numbers: numbers n of the form x*y for x greater than 1 and y greater than 1.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-10.
  • ^ Sloane, N. J. A. (ed.). "Sequence A051402 (Inverse Mertens function: smallest k such that |M(k)| is n, where M(x) is Mertens's function A002321.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-02-08.
  • ^ "Sloane's A000127 : Maximal number of regions obtained by joining n points around a circle by straight lines". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-09-30.
  • ^ Hart, George W. (1998). "Icosahedral Constructions" (PDF). In Sarhangi, Reza (ed.). Bridges: Mathematical Connections in Art, Music, and Science. Proceedings of the Bridges Conference. Winfield, Kansas. p. 196. ISBN 978-0966520101. OCLC 59580549. S2CID 202679388.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ "Tureng - 31 çekmek - Türkçe İngilizce Sözlük". tureng.com. Retrieved 2023-01-18.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=31_(number)&oldid=1233144507"

    Category: 
    Integers
    Hidden categories: 
    Pages using OEIS references with unknown parameters
    CS1 maint: location missing publisher
    Articles with short description
    Short description matches Wikidata
    Pages using infobox number with prime parameter
    All articles with unsourced statements
    Articles with unsourced statements from October 2019
    Articles with unsourced statements from October 2021
    Articles with unsourced statements from February 2024
    Commons category link from Wikidata
     



    This page was last edited on 7 July 2024, at 14:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki