Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Background  





2 Function  





3 Applications  





4 Nomenclature  





5 References  





6 Further reading  














3-dehydroquinate synthase






Deutsch
Français
Italiano
Српски / srpski
Srpskohrvatski / српскохрватски
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


3-dehydroquinate synthase
Ribbon representation of the Helicobacter pylori 3-dehydroquinate synthase.[1]
Identifiers
EC no.4.2.3.4
CAS no.37211-77-1
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
3-dehydroquinate synthase
3-Dehydroquinate synthase homodimer, Aspergillus nidulans
Identifiers
SymbolDHQ_synthase
PfamPF01761
InterProIPR002658
SCOP21dqs / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

The enzyme 3-dehydroquinate synthase (EC 4.2.3.4) catalyzes the chemical reaction

[[3-deoxy-D-arabino-hept-2-ulosonate 7-phosphate]] 3-dehydroquinate + phosphate

The protein uses NAD+ to catalyze the reaction.[2][3] This reaction is part of the shikimate pathway which is involved in the biosynthesis of aromatic amino acids.

3-Dehydroquinate synthase belongs to the family of lyases, to be specific those carbon-oxygen lyases acting on phosphates. This enzyme participates in phenylalanine, tyrosine, and tryptophan biosynthesis. It employs one cofactor, cobalt (Co2+).

The reaction catalyzed by 3-dehydroquinate synthase

Background

[edit]

The shikimate pathway is composed of seven steps, each catalyzed by an enzyme. The shikimate pathway is responsible for producing the precursors for aromatic amino acids, which are essential to our diets because we cannot synthesize them in our bodies. Only plants, bacteria, and microbial eukaryotes are capable of producing aromatic amino acids. The pathway ultimately converts phosphoenolpyruvate and 4-erythrose phosphate into chorismate, the precursor to aromatic amino acids. 3-Dehydroquinate synthase is the enzyme that catalyzes reaction in the second step of this pathway. This second step of the reaction eliminates a phosphate from 3-deoxy-D-arabino-heptulosonate 7-phosphate, which results in 3-dehydroquinate. 3-Dehydroquinate synthase is a monomeric enzyme, and has a molecular weight of 39,000.[4] 3-dehydroquinate synthase is activated by inorganic phosphate, and requires NAD+ for activity, although the reaction in total is neutral when catalyzed by an enzyme.[4]

Function

[edit]

3-Dehydroquinate synthase utilizes a complex multi-step mechanism that includes alcohol oxidation, phosphate β-elimination, carbonyl reduction, ring opening, and intramolecular aldol condensation.[5] Dehydroquinate synthase requires NAD+ and a cobalt cofactor to catalyze the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate into 3-dehydroquinate. Dehydroquinate synthase is of particular interest because of its complicated activity relative to its small size.[5] In most bacteria, this enzyme has only one function. However, in fungi and protists, it is part of the pentafunctional AROM complex that comprises steps two, three, four, five and six of the shikimate pathway. Together with 3-dehydroquinate dehydratase, 3-dehydroquinate synthase forms the core of this complex.[6]

Applications

[edit]

3-Dehydroquinate synthase catalyzes the second step in the shikimate pathway, which is essential for the production of aromatic amino acids in bacteria, plants, and fungi, but not mammals. This makes it an ideal target for new antimicrobial agents, anti-parasitic agents, and herbicides.[1] Other enzymes in the shikimate pathway have already been targeted and put to use as herbicides.

This cartoon representation of 3-dehydroquinate synthase shows the arrangement of the secondary structure of the protein
3-dehydroquinate synthase interacting with its substrates NAD+, carbaphosphonate, and Zn2+, which are shown as spheres in this representation
This representation of 3-dehydroquinate synthase shows the surface of the enzyme, as well as the active site, which can be seen in the middle.

Nomenclature

[edit]

The systematic name of this enzyme class is 3-deoxy-D-arabino-hept-2-ulosonate-7-phosphate phosphate-lyase (cyclizing; 3-dehydroquinate-forming). Other names in common use include 5-dehydroquinate synthase, 5-dehydroquinic acid synthetase, dehydroquinate synthase, 3-dehydroquinate synthetase, 3-deoxy-arabino-heptulosonate-7-phosphate phosphate-lyase, (cyclizing), and 3-deoxy-arabino-heptulonate-7-phosphate phosphate-lyase (cyclizing).

References

[edit]
  1. ^ a b PDB: 3CLH​; Liu JS, Cheng WC, Wang HJ, Chen YC, Wang WC (August 2008). "Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase". Biochemical and Biophysical Research Communications. 373 (1): 1–7. doi:10.1016/j.bbrc.2008.05.070. PMID 18503755.; rendered with MacPyMOL
  • ^ Hawkins AR, Lamb HK (August 1995). "The molecular biology of multidomain proteins. Selected examples". European Journal of Biochemistry. 232 (1): 7–18. doi:10.1111/j.1432-1033.1995.tb20775.x. PMID 7556173.
  • ^ Barten R, Meyer TF (April 1998). "Cloning and characterisation of the Neisseria gonorrhoeae aroB gene". Molecular & General Genetics. 258 (1–2): 34–44. doi:10.1007/s004380050704. PMID 9613570. S2CID 26380973.
  • ^ a b Herrmann KM, Weaver LM (June 1999). "The Shikimate Pathway". Annual Review of Plant Physiology and Plant Molecular Biology. 50: 473–503. doi:10.1146/annurev.arplant.50.1.473. PMID 15012217.
  • ^ a b Negron L, Patchett ML, Parker EJ (2011). "Expression, Purification, and Characterisation of Dehydroquinate Synthase from Pyrococcus furiosus". Enzyme Research. 2011: 134893. doi:10.4061/2011/134893. PMC 3092513. PMID 21603259.
  • ^ Arora Verasztó, H; Logotheti, M; Albrecht, R; Leitner, A; Zhu, H; Hartmann, MD (6 July 2020). "Architecture and functional dynamics of the pentafunctional AROM complex". Nature Chemical Biology. 16 (9): 973–978. doi:10.1038/s41589-020-0587-9. PMID 32632294. S2CID 220375879.
  • Further reading

    [edit]
  • Srinivasan PR, Rothschild J, Sprinson DB (October 1963). "The enzymic conversion of 3-deoxy-d-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate". The Journal of Biological Chemistry. 238 (10): 3176–82. doi:10.1016/S0021-9258(18)48643-7. PMID 14085358.
  • Bender SL, Mehdi S, Knowles JR (September 1989). "Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis". Biochemistry. 28 (19): 7555–60. doi:10.1021/bi00445a009. PMID 2514789.
  • Carpenter EP, Hawkins AR, Frost JW, Brown KA (July 1998). "Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis". Nature. 394 (6690): 299–302. Bibcode:1998Natur.394..299C. doi:10.1038/28431. PMID 9685163. S2CID 4423190.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=3-dehydroquinate_synthase&oldid=1210426751"

    Categories: 
    EC 4.2.3
    Cobalt enzymes
    Enzymes of known structure
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 26 February 2024, at 15:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki