Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Symmetry  





2 Order 3-8 kisrhombille  





3 Naming  





4 Related polyhedra and tilings  





5 See also  





6 References  





7 External links  














Truncated trioctagonal tiling







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from 832 symmetry)

Truncated trioctagonal tiling
Truncated trioctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.6.16
Schläfli symbol tr{8,3} or
Wythoff symbol 2 8 3 |
Coxeter diagram or
Symmetry group [8,3], (*832)
Dual Order 3-8 kisrhombille
Properties Vertex-transitive

Ingeometry, the truncated trioctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symboloftr{8,3}.

Symmetry[edit]

Truncated trioctagonal tiling with mirror lines

The dual of this tiling, the order 3-8 kisrhombille, represents the fundamental domains of [8,3] (*832) symmetry. There are 3 small index subgroups constructed from [8,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

A larger index 6 subgroup constructed as [8,3*], becomes [(4,4,4)], (*444). An intermediate index 3 subgroup is constructed as [8,3], with 2/3 of blue mirrors removed.

Small index subgroups of [8,3], (*832)
Index 1 2 3 6
Diagrams
Coxeter
(orbifold)
[8,3] =
(*832)
[1+,8,3] = =
(*433)
[8,3+] =
(3*4)
[8,3] = =
(*842)
[8,3*] = =
(*444)
Direct subgroups
Index 2 4 6 12
Diagrams
Coxeter
(orbifold)
[8,3]+ =
(832)
[8,3+]+ = =
(433)
[8,3]+ = =
(842)
[8,3*]+ = =
(444)

Order 3-8 kisrhombille[edit]

Truncated trioctagonal tiling
TypeDual semiregular hyperbolic tiling
FacesRight triangle
EdgesInfinite
VerticesInfinite
Coxeter diagram
Symmetry group[8,3], (*832)
Rotation group[8,3]+, (832)
Dual polyhedronTruncated trioctagonal tiling
Face configurationV4.6.16
Propertiesface-transitive

The order 3-8 kisrhombille is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4, 6, and 16 triangles meeting at each vertex.

The image shows a Poincaré disk model projection of the hyperbolic plane.

It is labeled V4.6.16 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 16 triangles. It is the dual tessellation of the truncated trioctagonal tiling which has one square and one octagon and one hexakaidecagon at each vertex.

Naming[edit]

An alternative name is 3-8 kisrhombillebyConway, seeing it as a 3-8 rhombic tiling, divided by a kis operator, adding a center point to each rhombus, and dividing into four triangles.

Related polyhedra and tilings[edit]

This tiling is one of 10 uniform tilings constructed from [8,3] hyperbolic symmetry and three subsymmetries [1+,8,3], [8,3+] and [8,3]+.

Uniform octagonal/triangular tilings
  • t
  • e
  • Symmetry: [8,3], (*832) [8,3]+
    (832)
    [1+,8,3]
    (*443)
    [8,3+]
    (3*4)
    {8,3} t{8,3} r{8,3} t{3,8} {3,8} rr{8,3}
    s2{3,8}
    tr{8,3} sr{8,3} h{8,3} h2{8,3} s{3,8}




    or

    or





    Uniform duals
    V83 V3.16.16 V3.8.3.8 V6.6.8 V38 V3.4.8.4 V4.6.16 V34.8 V(3.4)3 V8.6.6 V35.4

    This tiling can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram . For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.

    *n32 symmetry mutation of omnitruncated tilings: 4.6.2n
  • t
  • e
  • Sym.
    *n32
    [n,3]
    Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
    *232
    [2,3]
    *332
    [3,3]
    *432
    [4,3]
    *532
    [5,3]
    *632
    [6,3]
    *732
    [7,3]
    *832
    [8,3]
    *∞32
    [∞,3]
     
    [12i,3]
     
    [9i,3]
     
    [6i,3]
     
    [3i,3]
    Figures
    Config. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
    Duals
    Config. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.∞ V4.6.24i V4.6.18i V4.6.12i V4.6.6i

    See also[edit]

    References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Truncated_trioctagonal_tiling&oldid=1189602165#Symmetry"

    Categories: 
    Hyperbolic tilings
    Isogonal tilings
    Semiregular tilings
    Truncated tilings
    Hidden categories: 
    Commons category link is on Wikidata
    Commons category link is locally defined
     



    This page was last edited on 12 December 2023, at 21:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki