Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Origins  



1.1  AES (Apollo Extension Series) Lunar Base  



1.1.1  Evolution  





1.1.2  Associated vehicles  







1.2  LESA (Lunar Exploration System for Apollo) Lunar Base  





1.3  Lunar Escape Systems  





1.4  Manned Venus Flyby  







2 Development  





3 Skylab  





4 Apollo-Soyuz Test Project  





5 Summary of missions  





6 References  



6.1  Works cited  
















Apollo Applications Program






Čeština
Deutsch
Español
Français
Italiano
Suomi
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Apollo Applications Program (AAP) was created as early as 1966 by NASA headquarters to develop science-based human spaceflight missions using hardware developed for the Apollo program. AAP was the ultimate development of a number of official and unofficial Apollo follow-on projects studied at various NASA labs.[1] However, the AAP's ambitious initial plans became an early casualty when the Johnson Administration declined to support it adequately, partly in order to implement its Great Society set of domestic programs while remaining within a $100 billion budget. Thus, Fiscal Year 1967 ultimately allocated $80 million to the AAP, compared to NASA's preliminary estimates of $450 million necessary to fund a full-scale AAP program for that year, with over $1 billion being required for FY 1968.[2] The AAP eventually led to Skylab, which absorbed much of what had been developed under Apollo Applications.

Origins[edit]

NASA management was concerned about losing the 400,000 workers involved in Apollo after landing on the Moon in 1969.[3] A reason Wernher von Braun, head of NASA's Marshall Space Flight Center during the 1960s, advocated for a smaller station after his large one was not built was that he wished to provide his employees with work beyond developing the Saturn rockets, which would be completed relatively early during Project Apollo.[4] NASA set up the Apollo Logistic Support System Office, originally intended to study various ways to modify the Apollo hardware for scientific missions. Initially the AAP office was an offshoot of the Apollo "X" bureau, also known as the Apollo Extension Series. AES was developing technology concepts for mission proposals based on the Saturn IB and Saturn V boosters. These included a crewed lunar base, an Earth-orbiting space station, the so-called Grand Tour of the Outer Solar System, and the original Voyager program of Mars Lander probes.

AES (Apollo Extension Series) Lunar Base[edit]

Apollo Extension Systems Lunar Base concept

The Apollo lunar base proposal saw an uncrewed Saturn V used to land a shelter based on the Apollo Command/Service Module (CSM) on the Moon. A second Saturn V would carry a three-person crew and a modified CSM and Apollo Lunar Module (LM) to the Moon. The two-person excursion team would have a surface stay time of nearly 200 days and use of an advanced lunar rover and a lunar flier as well as logistics vehicles to construct a larger shelter. The isolation of the CSM pilot was a concern for mission planners, so proposals that it would be a three-person landing team or that the CSM would rendezvous with an orbiting module were considered.

Evolution[edit]

The following phases were considered:

Associated vehicles[edit]

The Apollo LM Taxi was essentially the basic Apollo LM modified for extended lunar surface stays. This was expected to be the workhorse of both Apollo Applications Extended Lunar Surface Missions beginning in 1970 and to larger Lunar Exploration System for Apollo in the mid-to-late 1970s.

The Apollo LM Shelter was essentially an Apollo LM with ascent stage engine and fuel tanks removed and replaced with consumables and scientific equipment for 14 days' extended lunar exploration.

The MOBEV F2B was a multi-person surface-to-surface flying vehicle.

LESA (Lunar Exploration System for Apollo) Lunar Base[edit]

The basic Apollo hardware would evolve into AES (Apollo Extension Systems), followed by ALSS (Apollo Logistics Support System), and then LESA (Lunar Exploration System for Apollo). The result would be ever-expanding permanent stations on the Moon.

LESA (Lunar Exploration System for Apollo) represented the last lunar base concept studied by NASA prior to the cancellation of further Saturn V production. LESA would use a new Lunar Landing Vehicle to land payloads on the lunar surface and extended CSM and LM Taxi hardware derived from the basic Apollo program would allow crews to be rotated to the ever-expanding, and eventually permanent, lunar base. A nuclear reactor would provide power.

Phases:

Lunar Escape Systems[edit]

To support longer stays on the Moon, NASA also studied a number of simple Lunar Escape Systems as a means of returning two astronauts from the lunar surface to an orbiting CSM if the Lunar Module ascent-stage engine failed to ignite.

Manned Venus Flyby[edit]

Another plan for Apollo-based extended-duration crewed spaceflight would use a Saturn V to send three men on a Manned Venus Flyby, using the Saturn S-IVB stage as a "wet workshop". First the S-IVB would boost itself and the Apollo CSM on a trajectory that would pass by Venus and return to Earth, then any remaining fuel would be vented to space, after which the astronauts would live in the empty fuel tanks until they separated from the S-IVB shortly before reentry on their return to Earth.[5]

Development[edit]

When procurement of Saturn Vs other than those required for the lunar landing was stopped in 1968, focus shifted to AAP. Aside from attempting to show that Apollo presented value for money, NASA and the main contractors of Boeing, Grumman, North American Aviation and Rockwell also hoped to put off the inevitable scaling down of staff and facilities following the completion of the first Moon landing.

Three AAP proposals were selected for development:

In the meantime several of the Earth-orbit "checkout" missions for Apollo had been canceled, leaving a number of Saturn IBs unused. The plans were changed to use the S-IVB stage, used on both rockets, as the primary station structure. A modified S-IVB would be launched into orbit, the second stage carrying a docking module and large solar panels in the area normally carrying the LM. A CSM would then be able to dock with the second stage and enter the now-empty fuel tanks. It was also suggested that the Apollo Telescope and Survey Mission modules might be docked to the Wet Workshop to create a modular space station.

The "Planetary Grand Tour" was moved to the Mariner program as "Mariner Jupiter-Saturn", which was later calved off into the Voyager program. Two probes were launched in 1977 on Titan IIIE rockets, with Voyager 2 completing the full Grand Tour in 1989.

Skylab[edit]

Originally, AAP missions would alternate with Apollo lunar missions, starting in 1969. However, when NASA's 1969 budget was cut, focus was shifted to the Skylab space station proposal, which managed to accommodate the equipment already specified for some of the AAP missions. Specifically, Skylab included the Apollo Telescope Mission (renamed the Apollo Telescope Mount) attached to the docking station used by the CSMs. Since the first two stages of the Saturn V had enough payload capability by themselves to place a pre-fabricated S-IVB workshop into the appropriate orbit, this enabled the "dry workshop" concept. This allowed the interior space to be better fitted out, although many design concepts from the "wet" workshop, notably the open flooring that allowed fuel to flow through it, were kept in Skylab.

The concept of launching another Skylab into lunar orbit using a spare S-IVB was briefly discussed around the same time, but no justification could be found for it, so the project was abandoned early on.

Apollo-Soyuz Test Project[edit]

The Apollo-Soyuz Test Project involved a docking in Earth orbit between a CSM and a Soviet Soyuz spacecraft. The mission lasted from July 15 to July 24, 1975. Although the Soviet Union continued to operate the Soyuz and Salyut space vehicles, NASA's next crewed mission would not be until STS-1 on April 12, 1981.

Summary of missions[edit]

U.S. Mission Booster Crew Launched Mission goal Mission result
Skylab 1 Saturn V Uncrewed May 14, 1973 Earth orbit Partial success - launch of Skylab, first US space station; micrometeoroid shield and one solar panel lost at launch, second jammed during deployment
Skylab 2 Saturn 1B Charles "Pete" Conrad, Paul Weitz, Joseph Kerwin May 25, 1973 Space station mission Success - Apollo spacecraft takes first US crew to Skylab for a 28-day stay; freed stuck solar panel and deployed replacement sunshield
Skylab 3 Saturn 1B Alan Bean, Jack Lousma, Owen Garriott July 28, 1973 Space station mission Success - Apollo spacecraft takes second US crew to Skylab for a 59-day stay
Skylab 4 Saturn 1B Gerald Carr, William Pogue, Edward Gibson November 16, 1973 Space station mission Success - Apollo spacecraft takes third US crew to Skylab for an 84-day stay
Apollo-Soyuz Test Project (ASTP) Saturn 1B Thomas P. Stafford, Vance D. Brand, Donald K. "Deke" Slayton July 15, 1975 Earth orbit Success - Apollo spacecraft conducted rendezvous and docking exercises with Soviet Soyuz 19 in Earth orbit. Upon landing, the Apollo Spacecraft was filled with toxic gas but the crew survived.

References[edit]

  1. ^ Portree, David S.F. "Before the Fire: Saturn-Apollo Applications (1966)". Wired. Retrieved August 8, 2019.
  • ^ "SP-4208 LIVING AND WORKING IN SPACE: A HISTORY OF SKYLAB; 3. APOLLO APPLICATIONS: "WEDNESDAY's CHILD"". Archived from the original on May 12, 2021. Retrieved August 8, 2019.
  • ^ Benson & Compton (1983), pp. 20, 22.
  • ^ Heppenheimer (1999), p. 61.
  • ^ TR-67-600-1-1 Manned Venus Flyby study - Feb. 1, 1967 (PDF format)
  • Works cited[edit]

  • Heppenheimer, T. A. (1999). The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle. Washington, D.C.: National Aeronautics and Space Administration History Office. OCLC 40305626. SP-4221.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Apollo_Applications_Program&oldid=1193568320"

    Categories: 
    Apollo program
    Canceled Apollo missions
    Human missions to Venus
    1968 establishments in Washington, D.C.
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use mdy dates from September 2021
    Commons category link from Wikidata
    Use American English from January 2014
    All Wikipedia articles written in American English
     



    This page was last edited on 4 January 2024, at 13:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki