Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Design  



1.1  CPU  



1.1.1  M1 Pro and M1 Max  





1.1.2  M1 Ultra  







1.2  GPU  





1.3  Memory  





1.4  Other features  







2 Performance and efficiency  





3 Products that use the Apple M1 series  



3.1  M1  





3.2  M1 Pro  





3.3  M1 Max  





3.4  M1 Ultra  







4 Problems  



4.1  USB power delivery bricking  





4.2  Security vulnerabilities  



4.2.1  M1racles  





4.2.2  Augury  





4.2.3  Pacman  





4.2.4  Security vulnerability (CVE-2022-32947)  





4.2.5  GoFetch  









5 Variants  





6 Gallery  





7 See also  





8 References  





9 External links  














Apple M1






العربية
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Latviešu
Lietuvių
Magyar
Nederlands

Norsk bokmål
Polski
Português
Русский
Simple English
Suomi
Svenska

Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Apple M1
Image of an M1 processor inside the 2020 Mac Mini. The two black chips on the right are the LPDDR4X unified memory.
General information
LaunchedNovember 10, 2020 (2020-11-10)[1]
DiscontinuedMay 7, 2024; 2 months ago (2024-05-07)
Designed byApple Inc.
Common manufacturer
Performance
Max. CPU clock rate3.2 GHz[1]
Cache
L1 cachePerformance cores: 192+128 KB per core
Efficiency cores: 128+64 KB per core
L2 cachePerformance Cores: 12–48 MB
Efficiency Cores: 4–8 MB
Last level cache8–96 MB system level cache
Architecture and classification
ApplicationDesktop (Mac Mini, iMac, Mac Studio), notebook (MacBook family), tablet (iPad Pro and iPad Air)
Technology node5 nm (N5)
Microarchitecture"Firestorm" and "Icestorm"[1]
Instruction setARMv8.5-A[2]
Physical specifications
Transistors
  • M1: 16 billion[3]
  • M1 Pro: 33.7 billion
  • M1 Max: 57 billion
  • M1 Ultra: 114 billion
  • Cores
    • 8–20 (4–16 high-performance + 2 or 4 high-efficiency)
    Memory (RAM)
  • LPDDR5 6400MT/s
    M1 Pro: 16 or 32 GB
  • M1 Max: 32 or 64 GB
  • M1 Ultra: 64 or 128 GB
  • GPUApple-designed integrated graphics (7–64 cores)
    Products, models, variants
    Variant
    History
    PredecessorsIntel Core and Apple T2 chip (Mac)

    Apple A12Z (iPad Pro)

    Apple A14 (iPad Air)
    SuccessorApple M2

    Apple M1 is a series of ARM-based system-on-a-chip (SoC) designed by Apple Inc., part of the Apple silicon series, as a central processing unit (CPU) and graphics processing unit (GPU) for its Mac desktops and notebooks, and the iPad Pro and iPad Air tablets.[4] The M1 chip initiated Apple's third change to the instruction set architecture used by Macintosh computers, switching from Intel to Apple silicon fourteen years after they were switched from PowerPC to Intel, and twenty-six years after the transition from the original Motorola 68000 seriestoPowerPC. At the time of its introduction in 2020, Apple said that the M1 had the world's fastest CPU core "in low power silicon" and the world's best CPU performance per watt.[4][5] Its successor, Apple M2, was announced on June 6, 2022, at Worldwide Developers Conference (WWDC).

    The original M1 chip was introduced in November 2020, and was followed by the professional-focused M1 Pro and M1 Max chips in October 2021. The M1 Max is a higher-powered version of the M1 Pro, with more GPU cores and memory bandwidth, a larger die size, and a large used interconnect. Apple introduced the M1 Ultra in 2022, a desktop workstation chip containing two interconnected M1 Max units. These chips differ largely in size and the number of functional units: for example, while the original M1 has about 16 billion transistors, the M1 Ultra has 114 billion.

    Apple's macOS and iPadOS operating systems both run on the M1. Initial support for the M1 SoC in the Linux kernel was released in version 5.13 on June 27, 2021.[6]

    The initial versions of the M1 chips contain an architectural defect that permits sandboxed applications to exchange data, violating the security model, an issue that has been described as "mostly harmless".[7]

    Design[edit]

    CPU[edit]

    The M1 has four high-performance "Firestorm" and four energy-efficient "Icestorm" cores, first seen on the A14 Bionic. It has a hybrid configuration similar to ARM big.LITTLE and Intel's Lakefield processors.[8] This combination allows power-use optimizations not possible with previous Apple–Intel architecture devices. Apple claims the energy-efficient cores use one-tenth the power of the high-performance ones.[9] The high-performance cores have an unusually large[10] 192 KB of L1 instruction cache and 128 KB of L1 data cache and share a 12 MB L2 cache; the energy-efficient cores have a 128 KB L1 instruction cache, 64 KB L1 data cache, and a shared 4 MB L2 cache. The SoC also has an 8 MB System Level Cache shared by the GPU.

    M1 Pro and M1 Max[edit]

    The M1 Pro and M1 Max use the same ARM big.LITTLE design as the M1, with eight high-performance "Firestorm" (six in the lower-binned variants of the M1 Pro) and two energy-efficient "Icestorm" cores, providing a total of ten cores (eight in the lower-binned variants of the M1 Pro).[11] The high-performance cores are clocked at 3228 MHz, and the high-efficiency cores are clocked at 2064 MHz. The eight high-performance cores are split into two clusters. Each high-performance cluster shares 12 MB of L2 cache. The two high-efficiency cores share 4 MB of L2 cache. The M1 Pro and M1 Max have 24 MB and 48 MB respectively of system level cache (SLC).[12]

    M1 Ultra[edit]

    The M1 Ultra consists of two M1 Max units connected with UltraFusion Interconnect with a total of 20 CPU cores and 96 MB system level cache (SLC).

    GPU[edit]

    The M1 integrates an Apple designed[13] eight-core (seven in some base models) graphics processing unit (GPU). Each GPU core is split into 16 execution units (EUs), which each contain 8 arithmetic logic units (ALUs). In total, the M1 GPU contains up to 128 EUs and 1024 ALUs,[14] which Apple says can execute up to 24,576 threads simultaneously and which have a maximum floating point (FP32) performance of 2.6 TFLOPs.[8][15]

    The M1 Pro integrates a 16-core (14 in some base models) graphics processing unit (GPU), while the M1 Max integrates a 32-core (24 in some base models) GPU. In total, the M1 Max GPU contains up to 512 execution units or 4096 ALUs, which have a maximum floating point (FP32) performance of 10.4 TFLOPs.

    The M1 Ultra features a 48- or 64-core GPU with up to 8192 ALUs and 21 TFLOPs of FP32 performance.

    Memory[edit]

    Model RAM (-MT/s) Width Data rate TB Controller
    M1 LPDDR4X-4266 0128 bit 068.3 GB/s 2xTB3
    M1 Pro LPDDR5-6400 0256 bit 204.8 GB/s 2xTB4
    M1 Max 0512 bit 409.6 GB/s 4xTB4
    M1 Ultra 1024 bit 819.2 GB/s 8xTB4

    The M1 uses a 128-bit LPDDR4X SDRAM[16] in a unified memory configuration shared by all the components of the processor, aka memory on package (MOP). The SoC and DRAM chips are mounted together in a system-in-a-package design. 8 GB and 16 GB configurations are available.

    The M1 Pro has 256-bit LPDDR5 SDRAM, and the M1 Max has 512-bit LPDDR5 SDRAM memory. While the M1 SoC has 66.67 GB/s memory bandwidth, the M1 Pro has 200 GB/s bandwidth and the M1 Max has 400 GB/s bandwidth.[8] The M1 Pro comes in memory configurations of 16 GB and 32 GB, and the M1 Max comes in configurations of 32 GB and 64 GB.[17]

    The M1 Ultra doubles the specs of the M1 Max for a 1024-bit or 1-kilobit memory bus with 800 GB/s bandwidth in a 64 GB or 128 GB configuration.

    Other features[edit]

    The M1 is the successor to and integrates all functionality of the Apple T2 chip that was present in Intel-based Macs. It keeps bridgeOS and sepOS active even if the main computer is in a halted low power mode to handle and store encryption keys, including keys for Touch ID, FileVault, macOS Keychain, and UEFI firmware passwords. It also stores the machine's unique ID (UID) and group ID (GID).

    The M1 contains dedicated neural network hardware in a 16-core Neural Engine, capable of executing 11 trillion operations per second.[8] Other components include an image signal processor, a PCI Express storage controller, a USB4 controller that includes Thunderbolt 3 support, and a Secure Enclave. The M1 Pro, Max and Ultra support Thunderbolt 4.

    The M1 has video codec encoding support for HEVC and H.264. It has decoding support for HEVC, H.264, and ProRes.[18] The M1 Pro, M1 Max, and M1 Ultra have a media engine which has hardware-accelerated H.264, HEVC, ProRes, and ProRes RAW. This media engine includes a video decode engine (the M1 Ultra has two), a video encode engine (the M1 Max has two and the M1 Ultra has four), and a ProRes encode and decode engine (again the M1 Max has two and the M1 Ultra has four).[19][20]

    The M1 Max supports High Power Mode on the 16-inch MacBook Pro for intensive tasks.[21] The M1 Pro supports two 6K displays at 60 Hz over Thunderbolt, while the M1 Max supports a third 6K display over Thunderbolt and a 4K monitor over HDMI 2.0.[17] All parameters of the M1 Max processors are doubled in M1 Ultra processors, as they are essentially two M1 Max processors operating in parallel; they are in a single package (in size being bigger than Socket AM4 AMD Ryzen processors)[22] and seen as one processor in macOS.

    Performance and efficiency[edit]

    The M1 recorded competitive[with whom?] performance in popular benchmarks (such as Geekbench and Cinebench R23).[23]

    The 2020 M1-equipped Mac Mini draws 7 watts when idle and 39 watts at maximum load,[24] compared to 20 watts at idle and 122 watts maximum load for the 2018 6-core Core i7 Mac Mini.[25] The energy efficiency of the M1 increases battery life of M1-based MacBooks by 50% compared to previous Intel-based MacBooks.[26]

    At release, the MacBook Air (M1, 2020) and MacBook Pro (M1, 2020) were praised by critics for their CPU performance and battery life, particularly compared to previous MacBooks.[27][28]

    Products that use the Apple M1 series[edit]

    M1[edit]

    M1 Pro[edit]

    M1 Max[edit]

    M1 Ultra[edit]

    Problems[edit]

    USB power delivery bricking[edit]

    After its release, some users who charged M1 devices through USB-C hubs reported bricking their device.[34] The devices that are reported to cause this issue were third-party USB-C hubs and non-Thunderbolt docks (excluding Apple's own dongle).[34] Apple handled this issue by replacing the logic board and by telling its customers not to charge through those hubs.[34] macOS Big Sur 11.2.2 includes a fix to prevent 2019 or later MacBook Pro models and 2020 or later MacBook Air models from being damaged by certain third-party USB-C hubs and docks.[35][36]

    Security vulnerabilities[edit]

    M1racles[edit]

    A flaw in M1 processors, given the name "M1racles", was announced in May 2021. Two sandboxed applications can exchange data without the system's knowledge by using an unintentionally writable processor register as a covert channel, violating the security model and constituting a minor vulnerability. It was discovered by Hector Martin, founder of the Asahi Linux project for Linux on Apple Silicon.[37]

    Augury[edit]

    In May 2022 a flaw termed "Augury" was announced involving the Data-Memory Dependent Prefetcher (DMP) in M1 chips, discovered by researchers at Tel Aviv University, the University of Illinois Urbana-Champaign, and the University of Washington. It was not considered a substantial security risk at the time.[38]

    Pacman[edit]

    In June 2022, MIT researchers announced they had found a speculative execution vulnerability in M1 chips which they called "Pacman" after pointer authentication codes (PAC).[39] Apple said they did not believe this posed a serious threat to users.[40]

    Security vulnerability (CVE-2022-32947)[edit]

    In 2022, an exploit regarding the M1's page table translations was found by Asahi Lina, a YouTuber and one of the developers involved in Asahi Linux for the GPU: the exploit was discovered by accident during initial reverse engineering efforts of the GPU in the middle of a live-stream. The exploit involved the use of the user having firmware read-write permissions, Apple's Page Translation Lookup Table, registers, and the uPPL. Using return-oriented programming, the exploit took the form of a shader that would have several components be integrated into the micro sequence in the hardware, generate a fake page table, changing registers to point towards the new page table, and invoking the Lookup Table to perform a uPPL call. As the uPPL had the ability to modify the page table contents, and the lookup table had the unrestricted ability to perform a uPPL call, an attacker can use this exploit to gain root privileges with the fake page table being referenced by the registers: after the fake page table is mapped over the original from the uPPL-Lookup Table vulnerability, and the registers are reset, the attacker then can modify variables to be run as root.

    The exploit was considered unique as it involved the use of a shader instead of more traditional means, but the exploit would be categorized under the “Device Attack via user-installed app” category, and was worth $150,000.

    A full video was posted in September 2023 that demonstrated the full exploit,[41] along with a website that included information on how the exploit worked. The site also had a JavaScript emulated micro sequence that demonstrated each step of the process.[42]

    GoFetch[edit]

    An exploit named GoFetch[43] is able to extract cryptographic keys from M-series chip devices without administrative privileges.[44]

    Variants[edit]

    The table below shows the various SoCs based on the "Firestorm" and "Icestorm" microarchitectures.[45][46]

    Variant CPU
    cores (P+E)
    GPU NPU Memory Transistor
    count
    Cores EU ALU Cores Performance Size Bandwidth
    A14 Bionic 6 (2+4) 4 64 512 16 11 TOPS 4–6 GB 34.1 GB/s 11.8 billion
    M1 8 (4+4) 7 112 896 8–16 GB 68.3 GB/s 16 billion
    8 128 1024
    M1 Pro 8 (6+2) 14 224 1792 16–32 GB 204.8 GB/s 33.7 billion
    10 (8+2)
    16 256 2048
    M1 Max 10 (8+2) 24 384 3072 32–64 GB 409.6 GB/s 57 billion
    32 512 4096
    M1 Ultra 20 (16+4) 48 768 6144 32 22 TOPS 64–128 GB 819.2 GB/s 114 billion
    64 1024 8192

    Gallery[edit]

  • M1 Pro (APL1103)
    M1 Pro (APL1103)
  • M1 Max (APL1105)
    M1 Max (APL1105)
  • M1 Ultra (APL1W06)
    M1 Ultra (APL1W06)
  • M1 (APL1102) on a Mac mini (M1, 2020) (model 9,1) logic board, compared with A13 SoC on an iPhone 11 CPU board
    M1 (APL1102) on a Mac mini (M1, 2020) (model 9,1) logic board, compared with A13 SoC on an iPhone 11 CPU board
  • See also[edit]

    References[edit]

    1. ^ a b c Frumusanu, Andrei (November 17, 2020), The 2020 Mac Mini Unleashed: Putting Apple Silicon M1 To The Test, archived from the original on 2021-02-01, retrieved 2020-11-18
  • ^ "llvm-project/llvm/include/llvm/TargetParser/AArch64TargetParser.h at main · llvm/llvm-project · GitHub". GitHub. 30 November 2023. Retrieved 30 November 2023.
  • ^ Shankland, Stephen. "M1 Pro and M1 Max: Here's how Apple is kicking Intel out of the Mac computer". CNET. Archived from the original on 2022-04-30. Retrieved 2021-10-26.
  • ^ a b "The Apple M1 is the first ARM-based chipset for Macs with the fastest CPU cores and top iGPU". GSMArena.com. Archived from the original on 2021-01-25. Retrieved 2020-11-11.
  • ^ Sohail, Omar (2020-11-10). "Apple's 5nm M1 Chip Is the First for ARM-Based Macs – Boasts 2x More Performance Than Latest Laptop CPU, Uses One-Fourth the Power". Wccftech. Archived from the original on 2021-01-26. Retrieved 2020-11-11.
  • ^ Adorno, José (2021-06-28). "Linux Kernel 5.13 officially launches with support for M1 Macs". 9to5Mac. Archived from the original on 2021-06-28. Retrieved 2021-06-29.
  • ^ Goodin, Dan (2021-05-28). "Covert channel in Apple's M1 is mostly harmless, but it sure is interesting". Ars Technica. Archived from the original on 2021-07-27. Retrieved 2021-11-18.
  • ^ a b c d "Apple M1 Chip". Apple.com. Apple. Archived from the original on 10 November 2020. Retrieved 11 November 2020.
  • ^ "Here's what the future of Apple silicon Macs look like". iMore. 2020-11-10. Archived from the original on 2020-12-07. Retrieved 2020-12-05.
  • ^ "Apple Announces The Apple Silicon M1: Ditching x86 – What to Expect, Based on A14: Apple's Humongous CPU Microarchitecture". AnandTech. 2020-11-10. Archived from the original on 2021-07-17. Retrieved 2021-07-15.
  • ^ "Introducing M1 Pro and M1 Max: the most powerful chips Apple has ever built". Apple Newsroom. Archived from the original on 2021-10-22. Retrieved 2021-10-22.
  • ^ Frumusanu, Andrei. "Apple's M1 Pro, M1 Max SoCs Investigated: New Performance and Efficiency Heights". www.anandtech.com. Archived from the original on 2021-10-26. Retrieved 2022-01-29.
  • ^ "Apple's M1 Pro, M1 Max SoCs Investigated: New Performance and Efficiency Heights. Page 6, "GPU Performance: 2-4x For Productivity, Mixed Gaming"". Archived from the original on 2021-11-29. Retrieved 2021-11-29.
  • ^ Frumusanu, Andrei. "The 2020 Mac Mini Unleashed: Putting Apple Silicon M1 To The Test". www.anandtech.com. Archived from the original on 2021-02-01. Retrieved 2021-01-30.
  • ^ Kingsley-Hughes, Adrian (10 Nov 2020). "Apple Silicon M1 chip: Here's what we know". ZDnet. Red Ventures. Archived from the original on 17 September 2021. Retrieved 1 July 2021.
  • ^ "M1 MacBook Air & Pro – EXCLUSIVE Apple Interview! | The Tech Chap – YouTube". www.youtube.com. 12 November 2020. Archived from the original on 2020-11-13. Retrieved 2020-11-14.
  • ^ a b "MacBook Pro 14- and 16-inch – Teardown". iFixit. Archived from the original on 2022-06-11. Retrieved 2022-04-19.
  • ^ "iPad Air (5th generation) - Technical Specifications". support.apple.com. Archived from the original on 2022-10-12. Retrieved 2022-11-05.
  • ^ "MacBook Pro (16-inch, 2021) - Technical Specifications". support.apple.com. Archived from the original on 2022-11-05. Retrieved 2022-11-05.
  • ^ "Mac Studio (2022) - Technical Specifications". support.apple.com. Archived from the original on 2022-11-05. Retrieved 2022-11-05.
  • ^ "16-Inch MacBook Pro With M1 Max Has a 'High Power Mode'". PCMAG. Archived from the original on 2021-10-24. Retrieved 2021-10-25.
  • ^ "Apple M1 Ultra Chip Is Nearly 3 Times Bigger Than AMD's Ryzen CPUs, Benchmarks Show Desktop Intel & AMD CPUs Still Ahead". wccftech.com. 2022-03-19. Archived from the original on 2022-03-21. Retrieved 2022-03-21.
  • ^ Antoniadis, Anastasios (November 21, 2020). "Apple M1 Benchmarks Are Here – Apple Delivered Performance and Efficiency". Borderpolar. Archived from the original on December 28, 2020. Retrieved January 6, 2021.
  • ^ "Mac mini power consumption and thermal output (BTU) information". Apple Support. Archived from the original on 2017-10-21. Retrieved 2021-08-08.
  • ^ Lovejoy, Ben (January 28, 2021). "M1 Mac mini power consumption and thermal output figures highlight Apple Silicon efficiency". 9To5Mac. Archived from the original on December 17, 2021. Retrieved May 14, 2021.
  • ^ "MacBook Air (Retina, 2020) vs MacBook Air (M1, 2020)". Apple. Archived from the original on 2022-09-01. Retrieved 2022-09-01.
  • ^ Cunningham, Andrew (December 18, 2020). "The Best MacBooks". The New York Times. Archived from the original on January 21, 2021. Retrieved January 6, 2021.
  • ^ "Yeah, Apple's M1 MacBook Pro is powerful, but it's the battery life that will blow you away". TechCrunch. 17 November 2020. Archived from the original on 23 June 2022. Retrieved 23 June 2022.
  • ^ "MacBook Air (M1, 2020) – Technical Specifications". support.apple.com. Archived from the original on 2020-11-11. Retrieved 2020-11-13.
  • ^ "Mac mini (M1, 2020) – Technical specifications". support.apple.com. Archived from the original on 2020-11-11. Retrieved 2020-11-13.
  • ^ "MacBook Pro (13-inch, M1, 2020) – Technical Specifications". support.apple.com. Archived from the original on 2020-11-11. Retrieved 2020-11-13.
  • ^ "All-new iMac features stunning design in a spectrum of vibrant colors, the breakthrough M1 chip, and a brilliant 4.5K Retina display". Apple Newsroom (Press release). Archived from the original on 2021-04-20. Retrieved 2021-04-20.
  • ^ "iPad Pro – Technical Specifications". Apple. Archived from the original on 2019-01-04. Retrieved 2021-04-21.
  • ^ a b c "M1 MacBook Air won't power on". MacRumors Forums. 28 November 2020. Archived from the original on 2021-01-12. Retrieved 2021-02-26.
  • ^ Miller, Chance (February 25, 2021). "macOS Big Sur 11.2.2 released with fix for using MacBooks with 'non-compliant' USB-C hubs". 9to5Mac. Archived from the original on February 25, 2021. Retrieved February 26, 2021.
  • ^ "What's new in the updates for macOS Big Sur". Apple Support. February 25, 2021. macOS Big Sur 11.2.2. Archived from the original on February 26, 2021. Retrieved February 26, 2021.
  • ^ Goodin, Dan (30 May 2021). "Apple's M1 Chip Has a Fascinating Flaw". Wired. Condé Nast. Archived from the original on 9 July 2021. Retrieved 1 July 2021.
  • ^ Roman Loyola (May 3, 2022). "Newly discovered 'Augury' flaw in M1 and A14 chips doesn't pose a serious risk (yet)". macworld.com. Archived from the original on June 11, 2022. Retrieved June 11, 2022.
  • ^ Ravichandran, Joseph; Na, Weon Taek; Lang, Jay; Yan, Mengjia (2022). "PACMAN: Attacking ARM Pointer Authentication with Speculative Execution". Proceedings of the 49th Annual International Symposium on Computer Architecture. 49th Annual International Symposium on Computer Architecture. New York: Association for Computing Machinery. doi:10.1145/3470496.3527429. hdl:1721.1/146470. ISBN 9781450386104. S2CID 249205178.
  • ^ Carly Page (June 10, 2022). "MIT researchers uncover 'unpatchable' flaw in Apple M1 chips". techcrunch.com. Archived from the original on June 10, 2022. Retrieved June 10, 2022.
  • ^ I hacked macOS!!!【Lina & Cyan Nyan】, 16 September 2023, retrieved 2023-10-08
  • ^ "Lina & Cyan - I hacked macOS! (CVE-2022-32947)". asahilina.net. Retrieved 2023-10-08.
  • ^ Goodin, Dan (2024-03-21). "Unpatchable vulnerability in Apple chip leaks secret encryption keys". Ars Technica. Retrieved 2024-03-22.
  • ^ GoFetch: Breaking Constant-Time Cryptographic Implementations Using Data Memory-Dependent Prefetchers. Boru Chen and Yingchen Wang and Pradyumna Shome and Christopher W. Fletcher and David Kohlbrenner and Riccardo Paccagnella and Daniel Genkin. USENIX Security 2024.
  • ^ "Apple M1 Chip: Everything You Need to Know". MacRumors. Archived from the original on 2022-07-30. Retrieved 2022-07-30.
  • ^ "Apple's M1 Ultra Chip: Everything You Need to Know". MacRumors. 9 May 2022. Archived from the original on 2022-07-30. Retrieved 2022-07-30.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Apple_M1&oldid=1232168982"

    Categories: 
    Computer-related introductions in 2020
    Apple silicon
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with specifically marked weasel-worded phrases
    Articles with specifically marked weasel-worded phrases from May 2024
    Official website different in Wikidata and Wikipedia
     



    This page was last edited on 2 July 2024, at 09:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki