Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Properties  





3 Results  





4 References  














Banach measure






Español
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In the mathematical discipline of measure theory, a Banach measure is a certain way to assign a size (or area) to all subsets of the Euclidean plane, consistent with but extending the commonly used Lebesgue measure. While there are certain subsets of the plane which are not Lebesgue measurable, all subsets of the plane have a Banach measure. On the other hand, the Lebesgue measure is countably additive while a Banach measure is only finitely additive (and is therefore known as a "content").

Stefan Banach proved the existence of Banach measures in 1923.[1] This established in particular that paradoxical decompositions as provided by the Banach-Tarski paradox in Euclidean space R3 cannot exist in the Euclidean plane R2.

Definition[edit]

A Banach measure[2]onRn is a function (assigning a non-negative extended real number to each subset of Rn) such that

Properties[edit]

The finite additivity of μ implies that and for any pairwise disjoint sets . We also have whenever .

Since μ extends Lebesgue measure, we know that whenever A is a finite or a countable set and that for any product of intervals .

Since μ is invariant under isometries, it is in particular invariant under rotations and translations.

Results[edit]

Stefan Banach showed that Banach measures exist on R1 and on R2. These results can be derived from the fact that the groups of isometries of R1 and of R2 are solvable.

The existence of these measures proves the impossibility of a Banach–Tarski paradox in one or two dimensions: it is not possible to decompose a one- or two-dimensional set of finite Lebesgue measure into finitely many sets that can be reassembled into a set with a different Lebesgue measure, because this would violate the properties of the Banach measure that extends the Lebesgue measure.[3]

Conversely, the existence of the Banach-Tarski paradox in all dimensions n ≥ 3 shows that no Banach measure can exist in these dimensions.

AsVitali's paradox shows, Banach measures cannot be strengthened to countably additive ones: there exist subsets of Rn that are not Lebesgue measurable, for all n ≥ 1.

Most of these results depend on some form of the axiom of choice. Using only the axioms of Zermelo-Fraenkel set theory without the axiom of choice, it is not possible to derive the Banach-Tarski paradox, nor it is possible to prove the existence of sets that are not Lebesgue-measurable (the latter claim depends on a fairly weak and widely believed assumption, namely that the existence of inaccessible cardinals is consistent). The existence of Banach measures on R1 and on R2 can also not be proven in the absence of the axiom of choice.[4] In particular, no concrete formula for these Banach measures can be given.

References[edit]

  1. ^ Banach, Stefan (1923). "Sur le problème de la mesure" (PDF). Fundamenta Mathematicae. 4: 7–33. doi:10.4064/fm-4-1-7-33. Retrieved 6 March 2022.
  • ^ Wagon, Stan; Tomkowicz, Grzegorz (2016). The Banach-Tarski Paradox (2nd ed.). Cambridge University Press. p. 229.
  • ^ Stewart, Ian (1996), From Here to Infinity, Oxford University Press, p. 177, ISBN 9780192832023.
  • ^ Wagon, Stan; Tomkowicz, Grzegorz (2016). The Banach-Tarski Paradox (2nd ed.). Cambridge University Press. pp. 296–302.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Banach_measure&oldid=1192331670"

    Category: 
    Measures (measure theory)
     



    This page was last edited on 28 December 2023, at 20:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki