Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition and properties  





2 Example on R





3 See also  





4 References  





5 External links  














Discrete measure






Español
Հայերեն
Italiano

Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Schematic representation of the Dirac measure by a line surmounted by an arrow. The Dirac measure is a discrete measure whose support is the point 0. The Dirac measure of any set containing 0 is 1, and the measure of any set not containing 0 is 0.

Inmathematics, more precisely in measure theory, a measure on the real line is called a discrete measure (in respect to the Lebesgue measure) if it is concentrated on an at most countable set. The support need not be a discrete set. Geometrically, a discrete measure (on the real line, with respect to Lebesgue measure) is a collection of point masses.

Definition and properties[edit]

Given two (positive) σ-finite measures and on a measurable space . Then is said to be discrete with respect to if there exists an at most countable subset in such that

  1. All singletons with are measurable (which implies that any subset of is measurable)

A measure on is discrete (with respect to ) if and only if has the form

with and Dirac measures on the set defined as

for all .

One can also define the concept of discreteness for signed measures. Then, instead of conditions 2 and 3 above one should ask that be zero on all measurable subsets of and be zero on measurable subsets of [clarification needed]

Example on R[edit]

A measure defined on the Lebesgue measurable sets of the real line with values in is said to be discrete if there exists a (possibly finite) sequence of numbers

such that

Notice that the first two requirements in the previous section are always satisfied for an at most countable subset of the real line if is the Lebesgue measure.

The simplest example of a discrete measure on the real line is the Dirac delta function One has and

More generally, one may prove that any discrete measure on the real line has the form

for an appropriately chosen (possibly finite) sequence of real numbers and a sequence of numbers in of the same length.

See also[edit]

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Discrete_measure&oldid=1229600707"

Category: 
Measures (measure theory)
Hidden categories: 
Wikipedia articles needing clarification from November 2023
Pages displaying wikidata descriptions as a fallback via Module:Annotated link
 



This page was last edited on 17 June 2024, at 18:10 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki