Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formal definition  





2 On the real line  





3 Product spaces  





4 Applications  



4.1  LebesgueStieltjes integral  





4.2  Laplace transform  





4.3  Moment problem  





4.4  Hausdorff dimension and Frostman's lemma  





4.5  CramérWold theorem  







5 See also  





6 References  





7 Further reading  





8 External links  














Borel measure






Čeština
Deutsch
Español
Français

Italiano
Nederlands

Polski
Português
Русский
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets).[1] Some authors require additional restrictions on the measure, as described below.

Formal definition[edit]

Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open setsof; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.[2] A few authors require in addition that islocally finite, meaning that for every compact set . If a Borel measure is both inner regular and outer regular, it is called a regular Borel measure. If is both inner regular, outer regular, and locally finite, it is called a Radon measure.

On the real line[edit]

The real line with its usual topology is a locally compact Hausdorff space; hence we can define a Borel measure on it. In this case, is the smallest σ-algebra that contains the open intervalsof. While there are many Borel measures μ, the choice of Borel measure that assigns for every half-open interval is sometimes called "the" Borel measure on . This measure turns out to be the restriction to the Borel σ-algebra of the Lebesgue measure , which is a complete measure and is defined on the Lebesgue σ-algebra. The Lebesgue σ-algebra is actually the completion of the Borel σ-algebra, which means that it is the smallest σ-algebra that contains all the Borel sets and can be equipped with a complete measure. Also, the Borel measure and the Lebesgue measure coincide on the Borel sets (i.e., for every Borel measurable set, where is the Borel measure described above). This idea extends to finite-dimensional spaces (the Cramér–Wold theorem, below) but does not hold, in general, for infinite-dimensional spaces. Infinite-dimensional Lebesgue measures do not exist.

Product spaces[edit]

IfX and Y are second-countable, Hausdorff topological spaces, then the set of Borel subsets of their product coincides with the product of the sets of Borel subsets of X and Y.[3] That is, the Borel functor

from the category of second-countable Hausdorff spaces to the category of measurable spaces preserves finite products.

Applications[edit]

Lebesgue–Stieltjes integral[edit]

The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.[4]

Laplace transform[edit]

One can define the Laplace transform of a finite Borel measure μ on the real line by the Lebesgue integral[5]

An important special case is where μ is a probability measure or, even more specifically, the Dirac delta function. In operational calculus, the Laplace transform of a measure is often treated as though the measure came from a distribution function f. In that case, to avoid potential confusion, one often writes

where the lower limit of 0 is shorthand notation for

This limit emphasizes that any point mass located at 0 is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the Laplace–Stieltjes transform.

Moment problem[edit]

One can define the moments of a finite Borel measure μ on the real line by the integral

For these correspond to the Hamburger moment problem, the Stieltjes moment problem and the Hausdorff moment problem, respectively. The question or problem to be solved is, given a collection of such moments, is there a corresponding measure? For the Hausdorff moment problem, the corresponding measure is unique. For the other variants, in general, there are an infinite number of distinct measures that give the same moments.

Hausdorff dimension and Frostman's lemma[edit]

Given a Borel measure μ on a metric space X such that μ(X) > 0 and μ(B(x, r)) ≤ rs holds for some constant s > 0 and for every ball B(x, r) in X, then the Hausdorff dimension dimHaus(X) ≥ s. A partial converse is provided by the Frostman lemma:[6]

Lemma: Let A be a Borel subset of Rn, and let s > 0. Then the following are equivalent:

holds for all x ∈ Rn and r > 0.

Cramér–Wold theorem[edit]

The Cramér–Wold theoreminmeasure theory states that a Borel probability measureon is uniquely determined by the totality of its one-dimensional projections.[7] It is used as a method for proving joint convergence results. The theorem is named after Harald Cramér and Herman Ole Andreas Wold.

See also[edit]

References[edit]

  1. ^ D. H. Fremlin, 2000. Measure Theory Archived 2010-11-01 at the Wayback Machine. Torres Fremlin.
  • ^ Alan J. Weir (1974). General integration and measure. Cambridge University Press. pp. 158–184. ISBN 0-521-29715-X.
  • ^ Vladimir I. Bogachev. Measure Theory, Volume 1. Springer Science & Business Media, Jan 15, 2007
  • ^ Halmos, Paul R. (1974), Measure Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90088-9
  • ^ Feller 1971, §XIII.1
  • ^ Rogers, C. A. (1998). Hausdorff measures. Cambridge Mathematical Library (Third ed.). Cambridge: Cambridge University Press. pp. xxx+195. ISBN 0-521-62491-6.
  • ^ K. Stromberg, 1994. Probability Theory for Analysts. Chapman and Hall.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Borel_measure&oldid=1200511238"

    Category: 
    Measures (measure theory)
    Hidden categories: 
    Webarchive template wayback links
    Use American English from February 2019
    All Wikipedia articles written in American English
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 29 January 2024, at 17:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki