Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  As a transition kernel  





1.2  As a random element  







2 Basic related concepts  



2.1  Intensity measure  





2.2  Supporting measure  





2.3  Laplace transform  







3 Basic properties  



3.1  Measurability of integrals  





3.2  Uniqueness  





3.3  Decomposition  







4 Random counting measure  





5 See also  





6 References  














Random measure






Deutsch
Français
Nederlands
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inprobability theory, a random measure is a measure-valued random element.[1][2] Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

Definition[edit]

Random measures can be defined as transition kernels or as random elements. Both definitions are equivalent. For the definitions, let be a separable complete metric space and let be its Borel -algebra. (The most common example of a separable complete metric space is )

As a transition kernel[edit]

A random measure is a (a.s.) locally finite transition kernel from an abstract probability space to.[3]

Being a transition kernel means that

ismeasurable from to
is a measureon

Being locally finite means that the measures

satisfy for all bounded measurable sets and for all except some -null set

In the context of stochastic processes there is the related concept of a stochastic kernel, probability kernel, Markov kernel.

As a random element[edit]

Define

and the subset of locally finite measures by

For all bounded measurable , define the mappings

from to. Let be the -algebra induced by the mappings on and the -algebra induced by the mappings on. Note that .

A random measure is a random element from to that almost surely takes values in [3][4][5]

Basic related concepts[edit]

Intensity measure[edit]

For a random measure , the measure satisfying

for every positive measurable function is called the intensity measure of . The intensity measure exists for every random measure and is a s-finite measure.

Supporting measure[edit]

For a random measure , the measure satisfying

for all positive measurable functions is called the supporting measureof. The supporting measure exists for all random measures and can be chosen to be finite.

Laplace transform[edit]

For a random measure , the Laplace transform is defined as

for every positive measurable function .

Basic properties[edit]

Measurability of integrals[edit]

For a random measure , the integrals

and

for positive -measurable are measurable, so they are random variables.

Uniqueness[edit]

The distribution of a random measure is uniquely determined by the distributions of

for all continuous functions with compact support on. For a fixed semiring that generates in the sense that , the distribution of a random measure is also uniquely determined by the integral over all positive simple -measurable functions .[6]

Decomposition[edit]

A measure generally might be decomposed as:

Here is a diffuse measure without atoms, while is a purely atomic measure.

Random counting measure[edit]

A random measure of the form:

where is the Dirac measure, and are random variables, is called a point process[1][2]orrandom counting measure. This random measure describes the set of N particles, whose locations are given by the (generally vector valued) random variables . The diffuse component is null for a counting measure.

In the formal notation of above a random counting measure is a map from a probability space to the measurable space (, )ameasurable space. Here is the space of all boundedly finite integer-valued measures (called counting measures).

The definitions of expectation measure, Laplace functional, moment measures and stationarity for random measures follow those of point processes. Random measures are useful in the description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and particle filters.[7]

See also[edit]

References[edit]

  1. ^ a b Kallenberg, O., Random Measures, 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). ISBN 0-12-394960-2 MR854102. An authoritative but rather difficult reference.
  • ^ a b Jan Grandell, Point processes and random measures, Advances in Applied Probability 9 (1977) 502-526. MR0478331 JSTOR A nice and clear introduction.
  • ^ a b Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 1. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  • ^ Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 526. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  • ^ Daley, D. J.; Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Probability and its Applications. doi:10.1007/b97277. ISBN 0-387-95541-0.
  • ^ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 52. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.
  • ^ "Crisan, D., Particle Filters: A Theoretical Perspective, in Sequential Monte Carlo in Practice, Doucet, A., de Freitas, N. and Gordon, N. (Eds), Springer, 2001, ISBN 0-387-95146-6

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Random_measure&oldid=1225711216"

    Categories: 
    Measures (measure theory)
    Stochastic processes
     



    This page was last edited on 26 May 2024, at 06:39 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki