Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Vector spaces  





1.2  Modules  







2 Properties  





3 Examples  





4 Continuity and separate continuity  



4.1  Sufficient conditions for continuity  





4.2  Composition map  







5 See also  





6 References  





7 Bibliography  





8 External links  














Bilinear map






العربية
Català
Čeština
Deutsch
Español
فارسی
Français
Italiano
עברית
Nederlands

Polski
Română
Русский
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Bilinear operator)

Inmathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.

Definition[edit]

Vector spaces[edit]

Let and be three vector spaces over the same base field . A bilinear map is a function such that for all , the map is a linear map from to and for all , the map is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.

Such a map satisfies the following properties.

If and we have B(v, w) = B(w, v) for all then we say that Bissymmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied (for example: scalar product, inner product, and quadratic form).

Modules[edit]

The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear.

For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × NT with Tan(R, S)-bimodule, and for which any ninN, mB(m, n) is an R-module homomorphism, and for any minM, nB(m, n) is an S-module homomorphism. This satisfies

B(rm, n) = rB(m, n)
B(m, ns) = B(m, n) ⋅ s

for all minM, ninN, rinR and sinS, as well as B being additive in each argument.

Properties[edit]

An immediate consequence of the definition is that B(v, w) = 0X whenever v = 0Vorw = 0W. This may be seen by writing the zero vector 0Vas0 ⋅ 0V (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity.

The set L(V, W; X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V × W into X.

IfV, W, X are finite-dimensional, then so is L(V, W; X). For that is, bilinear forms, the dimension of this space is dim V × dim W (while the space L(V × W; F)oflinear forms is of dimension dim V + dim W). To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix B(ei, fj), and vice versa. Now, if X is a space of higher dimension, we obviously have dim L(V, W; X) = dim V × dim W × dim X.

Examples[edit]

Continuity and separate continuity[edit]

Suppose and are topological vector spaces and let be a bilinear map. Then b is said to be separately continuous if the following two conditions hold:

  1. for all the map given by is continuous;
  2. for all the map given by is continuous.

Many separately continuous bilinear that are not continuous satisfy an additional property: hypocontinuity.[1] All continuous bilinear maps are hypocontinuous.

Sufficient conditions for continuity[edit]

Many bilinear maps that occur in practice are separately continuous but not all are continuous. We list here sufficient conditions for a separately continuous bilinear map to be continuous.

Composition map[edit]

Let belocally convex Hausdorff spaces and let be the composition map defined by In general, the bilinear map is not continuous (no matter what topologies the spaces of linear maps are given). We do, however, have the following results:

Give all three spaces of linear maps one of the following topologies:

  1. give all three the topology of bounded convergence;
  2. give all three the topology of compact convergence;
  3. give all three the topology of pointwise convergence.

See also[edit]

References[edit]

  1. ^ a b c d e Trèves 2006, pp. 424–426.
  • ^ Schaefer & Wolff 1999, p. 118.
  • Bibliography[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bilinear_map&oldid=1195808809"

    Categories: 
    Bilinear maps
    Multilinear algebra
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    Articles with GND identifiers
     



    This page was last edited on 15 January 2024, at 10:32 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki