Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Generalization  



2.1  General Series  



2.1.1  Examples  



2.1.1.1  Rederive (Taylor) Carleman Matrix  





2.1.1.2  Carleman Matrix For Orthonormal Basis  





2.1.1.3  Carleman Matrix for Fourier Series  











3 Properties  





4 Examples  





5 Related matrices  





6 See also  





7 Notes  





8 References  














Carleman matrix







Slovenščina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In mathematics, a Carleman matrix is a matrix used to convert function composition into matrix multiplication. It is often used in iteration theory to find the continuous iteration of functions which cannot be iterated by pattern recognition alone. Other uses of Carleman matrices occur in the theory of probability generating functions, and Markov chains.

Definition

[edit]

The Carleman matrix of an infinitely differentiable function is defined as:

so as to satisfy the (Taylor series) equation:

For instance, the computation of by

simply amounts to the dot-product of row 1 of with a column vector .

The entries of in the next row give the 2nd power of :

and also, in order to have the zeroth power of in, we adopt the row 0 containing zeros everywhere except the first position, such that

Thus, the dot productof with the column vector yields the column vector , i.e.,

Generalization

[edit]

A generalization of the Carleman matrix of a function can be defined around any point, such as:

or where . This allows the matrix power to be related as:

General Series

[edit]
Another way to generalize it even further is think about a general series in the following way:
Let be a series approximation of , where is a basis of the space containing
Assuming that is also a basis for , We can define , therefore we have , now we can prove that , if we assume that is also a basis for and .
Let be such that where .
Now

Comparing the first and the last term, and from being a base for , and it follows that

Examples

[edit]
Rederive (Taylor) Carleman Matrix
[edit]

If we set we have the Carleman matrix. Because

then we know that the n-th coefficient must be the nth-coefficient of the taylor seriesof. Therefore
Therefore
Which is the Carleman matrix given above. (It's important to note that this is not an orthornormal basis)

Carleman Matrix For Orthonormal Basis
[edit]

If is an orthonormal basis for a Hilbert Space with a defined inner product , we can set and will be . Then .

Carleman Matrix for Fourier Series
[edit]

If we have the analogous for Fourier Series. Let and represent the carleman coefficient and matrix in the fourier basis. Because the basis is orthogonal, we have.

.


Then, therefore, which is

Properties

[edit]

Carleman matrices satisfy the fundamental relationship

which makes the Carleman matrix M a (direct) representation of . Here the term denotes the composition of functions .

Other properties include:

Examples

[edit]

The Carleman matrix of a constant is:

The Carleman matrix of the identity function is:

The Carleman matrix of a constant addition is:

The Carleman matrix of the successor function is equivalent to the Binomial coefficient:

The Carleman matrix of the logarithm is related to the (signed) Stirling numbers of the first kind scaled by factorials:

The Carleman matrix of the logarithm is related to the (unsigned) Stirling numbers of the first kind scaled by factorials:

The Carleman matrix of the exponential function is related to the Stirling numbers of the second kind scaled by factorials:

The Carleman matrix of exponential functions is:

The Carleman matrix of a constant multiple is:

The Carleman matrix of a linear function is:

The Carleman matrix of a function is:

The Carleman matrix of a function is:

[edit]

The Bell matrix or the Jabotinsky matrix of a function is defined as[1][2][3]

so as to satisfy the equation

These matrices were developed in 1947 by Eri Jabotinsky to represent convolutions of polynomials.[4] It is the transpose of the Carleman matrix and satisfy

which makes the Bell matrix Bananti-representationof.

See also

[edit]

Notes

[edit]
  1. ^ Knuth, D. (1992). "Convolution Polynomials". The Mathematica Journal. 2 (4): 67–78. arXiv:math/9207221. Bibcode:1992math......7221K.
  • ^ Jabotinsky, Eri (1953). "Representation of functions by matrices. Application to Faber polynomials". Proceedings of the American Mathematical Society. 4 (4): 546–553. doi:10.1090/S0002-9939-1953-0059359-0. ISSN 0002-9939.
  • ^ Lang, W. (2000). "On generalizations of the stirling number triangles". Journal of Integer Sequences. 3 (2.4): 1–19. Bibcode:2000JIntS...3...24L.
  • ^ Jabotinsky, Eri (1947). "Sur la représentation de la composition de fonctions par un produit de matrices. Applicaton à l'itération de e^x et de e^x-1". Comptes rendus de l'Académie des Sciences. 224: 323–324.
  • References

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Carleman_matrix&oldid=1235680348"

    Categories: 
    Functions and mappings
    Matrix theory
    Eponyms in mathematics
     



    This page was last edited on 20 July 2024, at 16:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki