Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Symmetry  





3 Properties  





4 See also  





5 References  














Involutory matrix






Ελληνικά
Español
فارسی
Français

Italiano
Русский
Slovenščina
ி

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix is an involution if and only if , where is the identity matrix. Involutory matrices are all square roots of the identity matrix. This is a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.[1]

Examples

[edit]

The real matrix is involutory provided that [2]

The Pauli matrices in M(2, C) are involutory:

One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix. A special case of another class of elementary matrix, that which represents multiplication of a row or column by −1, is also involutory; it is in fact a trivial example of a signature matrix, all of which are involutory.

Some simple examples of involutory matrices are shown below.

where

Any block-diagonal matrices constructed from involutory matrices will also be involutory, as a consequence of the linear independence of the blocks.

Symmetry

[edit]

An involutory matrix which is also symmetric is an orthogonal matrix, and thus represents an isometry (alinear transformation which preserves Euclidean distance). Conversely every orthogonal involutory matrix is symmetric.[3] As a special case of this, every reflection and 180° rotation matrix is involutory.

Properties

[edit]

An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix.

Anormal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real).

The determinant of an involutory matrix over any field is ±1.[4]

IfA is an n × n matrix, then A is involutory if and only if P+ = (I + A)/2 is idempotent. This relation gives a bijection between involutory matrices and idempotent matrices.[4] Similarly, A is involutory if and only if P = (I − A)/2 is idempotent. These two operators form the symmetric and antisymmetric projections of a vector with respect to the involution A, in the sense that , or . The same construct applies to any involutory function, such as the complex conjugate (real and imaginary parts), transpose (symmetric and antisymmetric matrices), and Hermitian adjoint (Hermitian and skew-Hermitian matrices).

IfA is an involutory matrix in M(n, R), which is a matrix algebra over the real numbers, and A is not a scalar multiple of I, then the subalgebra {xI + yA: x, yR} generated by Aisisomorphic to the split-complex numbers.

IfA and B are two involutory matrices which commute with each other (i.e. AB = BA) then AB is also involutory.

IfA is an involutory matrix then every integer powerofA is involutory. In fact, An will be equal to Aifnisodd and Iifniseven.

See also

[edit]

References

[edit]
  1. ^ Higham, Nicholas J. (2008), "6.11 Involutory Matrices", Functions of Matrices: Theory and Computation, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), pp. 165–166, doi:10.1137/1.9780898717778, ISBN 978-0-89871-646-7, MR 2396439.
  • ^ Peter Lancaster & Miron Tismenetsky (1985) The Theory of Matrices, 2nd edition, pp 12,13 Academic Press ISBN 0-12-435560-9
  • ^ Govaerts, Willy J. F. (2000), Numerical methods for bifurcations of dynamical equilibria, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), p. 292, doi:10.1137/1.9780898719543, ISBN 0-89871-442-7, MR 1736704.
  • ^ a b Bernstein, Dennis S. (2009), "3.15 Facts on Involutory Matrices", Matrix Mathematics (2nd ed.), Princeton, NJ: Princeton University Press, pp. 230–231, ISBN 978-0-691-14039-1, MR 2513751.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Involutory_matrix&oldid=1224648424"

    Category: 
    Matrices
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 19 May 2024, at 16:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki