Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  



1.1  Determinant  





1.2  Inversion  





1.3  Solution of linear system  





1.4  Eigenvalues  





1.5  Similarity to symmetric tridiagonal matrix  







2 Computer programming  





3 Applications  





4 See also  





5 Notes  





6 External links  














Tridiagonal matrix






Deutsch
Español
Esperanto
Euskara
فارسی
Français

ि
Italiano
עברית
Magyar
Русский
Slovenščina
Svenska
ி
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inlinear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main diagonal). For example, the following matrixistridiagonal:

The determinant of a tridiagonal matrix is given by the continuant of its elements.[1]

Anorthogonal transformation of a symmetric (or Hermitian) matrix to tridiagonal form can be done with the Lanczos algorithm.

Properties[edit]

A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix.[2] In particular, a tridiagonal matrix is a direct sumofp 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetricorHermitian, many of those that arise when solving linear algebra problems have one of these properties. Furthermore, if a real tridiagonal matrix A satisfies ak,k+1 ak+1,k > 0 for all k, so that the signs of its entries are symmetric, then it is similar to a Hermitian matrix, by a diagonal change of basis matrix. Hence, its eigenvalues are real. If we replace the strict inequality by ak,k+1 ak+1,k ≥ 0, then by continuity, the eigenvalues are still guaranteed to be real, but the matrix need no longer be similar to a Hermitian matrix.[3]

The set of all n ×n tridiagonal matrices forms a 3n-2 dimensional vector space.

Many linear algebra algorithms require significantly less computational effort when applied to diagonal matrices, and this improvement often carries over to tridiagonal matrices as well.

Determinant[edit]

The determinant of a tridiagonal matrix A of order n can be computed from a three-term recurrence relation.[4] Write f1 = |a1| = a1 (i.e., f1 is the determinant of the 1 by 1 matrix consisting only of a1), and let

The sequence (fi) is called the continuant and satisfies the recurrence relation

with initial values f0 = 1 and f−1 = 0. The cost of computing the determinant of a tridiagonal matrix using this formula is linear in n, while the cost is cubic for a general matrix.

Inversion[edit]

The inverse of a non-singular tridiagonal matrix T

is given by

where the θi satisfy the recurrence relation

with initial conditions θ0 = 1, θ1 = a1 and the ϕi satisfy

with initial conditions ϕn+1 = 1 and ϕn = an.[5][6]

Closed form solutions can be computed for special cases such as symmetric matrices with all diagonal and off-diagonal elements equal[7]orToeplitz matrices[8] and for the general case as well.[9][10]

In general, the inverse of a tridiagonal matrix is a semiseparable matrix and vice versa.[11] The inverse of a symmetric tridiagonal matrix can be written as a single-pair matrix (a.k.a. generator-representable semiseparable matrix) of the form[12][13]

where with

Solution of linear system[edit]

A system of equations Ax = b for  can be solved by an efficient form of Gaussian elimination when A is tridiagonal called tridiagonal matrix algorithm, requiring O(n) operations.[14]

Eigenvalues[edit]

When a tridiagonal matrix is also Toeplitz, there is a simple closed-form solution for its eigenvalues, namely:[15][16]

A real symmetric tridiagonal matrix has real eigenvalues, and all the eigenvalues are distinct (simple) if all off-diagonal elements are nonzero.[17] Numerous methods exist for the numerical computation of the eigenvalues of a real symmetric tridiagonal matrix to arbitrary finite precision, typically requiring operations for a matrix of size , although fast algorithms exist which (without parallel computation) require only .[18]

As a side note, an unreduced symmetric tridiagonal matrix is a matrix containing non-zero off-diagonal elements of the tridiagonal, where the eigenvalues are distinct while the eigenvectors are unique up to a scale factor and are mutually orthogonal.[19]

Similarity to symmetric tridiagonal matrix[edit]

For unsymmetricornonsymmetric tridiagonal matrices one can compute the eigendecomposition using a similarity transformation. Given a real tridiagonal, nonsymmetric matrix

where . Assume that each product of off-diagonal entries is strictly positive and define a transformation matrix by[20]

The similarity transformation yields a symmetric tridiagonal matrix by:[21][20]

Note that and have the same eigenvalues.

Computer programming[edit]

A transformation that reduces a general matrix to Hessenberg form will reduce a Hermitian matrix to tridiagonal form. So, many eigenvalue algorithms, when applied to a Hermitian matrix, reduce the input Hermitian matrix to (symmetric real) tridiagonal form as a first step.[22]

A tridiagonal matrix can also be stored more efficiently than a general matrix by using a special storage scheme. For instance, the LAPACK Fortran package stores an unsymmetric tridiagonal matrix of order n in three one-dimensional arrays, one of length n containing the diagonal elements, and two of length n − 1 containing the subdiagonal and superdiagonal elements.

Applications[edit]

The discretization in space of the one-dimensional diffusion or heat equation

using second order central finite differences results in

with discretization constant . The matrix is tridiagonal with and . Note: no boundary conditions are used here.

See also[edit]

Notes[edit]

  1. ^ Thomas Muir (1960). A treatise on the theory of determinants. Dover Publications. pp. 516–525.
  • ^ Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. Cambridge University Press. p. 28. ISBN 0521386322.
  • ^ Horn & Johnson, page 174
  • ^ El-Mikkawy, M. E. A. (2004). "On the inverse of a general tridiagonal matrix". Applied Mathematics and Computation. 150 (3): 669–679. doi:10.1016/S0096-3003(03)00298-4.
  • ^ Da Fonseca, C. M. (2007). "On the eigenvalues of some tridiagonal matrices". Journal of Computational and Applied Mathematics. 200: 283–286. doi:10.1016/j.cam.2005.08.047.
  • ^ Usmani, R. A. (1994). "Inversion of a tridiagonal jacobi matrix". Linear Algebra and its Applications. 212–213: 413–414. doi:10.1016/0024-3795(94)90414-6.
  • ^ Hu, G. Y.; O'Connell, R. F. (1996). "Analytical inversion of symmetric tridiagonal matrices". Journal of Physics A: Mathematical and General. 29 (7): 1511. doi:10.1088/0305-4470/29/7/020.
  • ^ Huang, Y.; McColl, W. F. (1997). "Analytical inversion of general tridiagonal matrices". Journal of Physics A: Mathematical and General. 30 (22): 7919. doi:10.1088/0305-4470/30/22/026.
  • ^ Mallik, R. K. (2001). "The inverse of a tridiagonal matrix". Linear Algebra and its Applications. 325: 109–139. doi:10.1016/S0024-3795(00)00262-7.
  • ^ Kılıç, E. (2008). "Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions". Applied Mathematics and Computation. 197: 345–357. doi:10.1016/j.amc.2007.07.046.
  • ^ Raf Vandebril; Marc Van Barel; Nicola Mastronardi (2008). Matrix Computations and Semiseparable Matrices. Volume I: Linear Systems. JHU Press. Theorem 1.38, p. 41. ISBN 978-0-8018-8714-7.
  • ^ Meurant, Gerard (1992). "A review on the inverse of symmetric tridiagonal and block tridiagonal matrices". SIAM Journal on Matrix Analysis and Applications. 13 (3): 707–728. doi:10.1137/0613045.
  • ^ Bossu, Sebastien (2024). "Tridiagonal and single-pair matrices and the inverse sum of two single-pair matrices". Linear Algebra and its Applications. 699: 129–158. arXiv:2304.06100. doi:10.1016/j.laa.2024.06.018.
  • ^ Golub, Gene H.; Van Loan, Charles F. (1996). Matrix Computations (3rd ed.). The Johns Hopkins University Press. ISBN 0-8018-5414-8.
  • ^ Noschese, S.; Pasquini, L.; Reichel, L. (2013). "Tridiagonal Toeplitz matrices: Properties and novel applications". Numerical Linear Algebra with Applications. 20 (2): 302. doi:10.1002/nla.1811.
  • ^ This can also be written as because , as is done in: Kulkarni, D.; Schmidt, D.; Tsui, S. K. (1999). "Eigenvalues of tridiagonal pseudo-Toeplitz matrices" (PDF). Linear Algebra and its Applications. 297: 63. doi:10.1016/S0024-3795(99)00114-7.
  • ^ Parlett, B.N. (1980). The Symmetric Eigenvalue Problem. Prentice Hall, Inc.
  • ^ Coakley, E.S.; Rokhlin, V. (2012). "A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices". Applied and Computational Harmonic Analysis. 34 (3): 379–414. doi:10.1016/j.acha.2012.06.003.
  • ^ Dhillon, Inderjit Singh. A New O(n 2 ) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (PDF). p. 8.
  • ^ a b Kreer, M. (1994). "Analytic birth-death processes: a Hilbert space approach". Stochastic Processes and their Applications. 49 (1): 65–74. doi:10.1016/0304-4149(94)90112-0.
  • ^ "www.math.hkbu.edu.hk math lecture" (PDF).
  • ^ Eidelman, Yuli; Gohberg, Israel; Gemignani, Luca (2007-01-01). "On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms". Linear Algebra and its Applications. 420 (1): 86–101. doi:10.1016/j.laa.2006.06.028. ISSN 0024-3795.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tridiagonal_matrix&oldid=1234595388"

    Category: 
    Sparse matrices
    Hidden categories: 
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 15 July 2024, at 05:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki