Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Alternative naming  





3 Properties  



3.1  Functions of one variable  





3.2  Functions of several variables  







4 Operations that preserve convexity  





5 Strongly convex functions  



5.1  Properties of strongly-convex functions  







6 Uniformly convex functions  





7 Examples  



7.1  Functions of one variable  





7.2  Functions of nvariables  







8 See also  





9 Notes  





10 References  





11 External links  














Convex function






العربية
Български
Català
Чӑвашла
Čeština
Dansk
Deutsch
Español
فارسی
Français
Galego

ि
Bahasa Indonesia
Italiano
עברית
Қазақша
Lietuvių
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
کوردی
Suomi
Svenska
ி
Українська
اردو
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Concave up)

Convex function on an interval.
A function (in black) is convex if and only if the region above its graph (in green) is a convex set.
A graph of the bivariate convex function x2 + xy + y2.
Convex vs. Not convex

Inmathematics, a real-valued function is called convex if the line segment between any two distinct points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap .

A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain.[1] Well-known examples of convex functions of a single variable include a linear function (where is a real number), a quadratic function ( as a nonnegative real number) and an exponential function ( as a nonnegative real number).

Convex functions play an important role in many areas of mathematics. They are especially important in the study of optimization problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has no more than one minimum. Even in infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such properties and as a result, they are the most well-understood functionals in the calculus of variations. In probability theory, a convex function applied to the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable. This result, known as Jensen's inequality, can be used to deduce inequalities such as the arithmetic–geometric mean inequality and Hölder's inequality.

Definition

[edit]
Visualizing a convex function and Jensen's Inequality

Let be a convex subset of a real vector space and let be a function.

Then is called convex if and only if any of the following equivalent conditions hold:

  1. For all and all : The right hand side represents the straight line between and in the graph of as a function of increasing from to or decreasing from to sweeps this line. Similarly, the argument of the function in the left hand side represents the straight line between and in or the -axis of the graph of So, this condition requires that the straight line between any pair of points on the curve of to be above or just meets the graph.[2]
  2. For all and all such that : The difference of this second condition with respect to the first condition above is that this condition does not include the intersection points (for example, and ) between the straight line passing through a pair of points on the curve of (the straight line is represented by the right hand side of this condition) and the curve of the first condition includes the intersection points as it becomes oratoror In fact, the intersection points do not need to be considered in a condition of convex using because and are always true (so not useful to be a part of a condition).

The second statement characterizing convex functions that are valued in the real line is also the statement used to define convex functions that are valued in the extended real number line where such a function is allowed to take as a value. The first statement is not used because it permits to take or as a value, in which case, if or respectively, then would be undefined (because the multiplications and are undefined). The sum is also undefined so a convex extended real-valued function is typically only allowed to take exactly one of and as a value.

The second statement can also be modified to get the definition of strict convexity, where the latter is obtained by replacing with the strict inequality Explicitly, the map is called strictly convex if and only if for all real and all such that :

A strictly convex function is a function that the straight line between any pair of points on the curve is above the curve except for the intersection points between the straight line and the curve. An example of a function which is convex but not strictly convex is . This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them.

The function is said to be concave (resp. strictly concave) if ( multiplied by −1) is convex (resp. strictly convex).

Alternative naming

[edit]

The term convex is often referred to as convex downorconcave upward, and the term concave is often referred as concave downorconvex upward.[3][4][5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph . As an example, Jensen's inequality refers to an inequality involving a convex or convex-(down), function.[6]

Properties

[edit]

Many properties of convex functions have the same simple formulation for functions of many variables as for functions of one variable. See below the properties for the case of many variables, as some of them are not listed for functions of one variable.

Functions of one variable

[edit]
Proof

Since is convex, by using one of the convex function definitions above and letting it follows that for all real From , it follows that Namely, .

Functions of several variables

[edit]

Operations that preserve convexity

[edit]

Strongly convex functions

[edit]

The concept of strong convexity extends and parametrizes the notion of strict convexity. Intuitively, a strongly-convex function is a function that grows as fast as a quadratic function.[11] A strongly convex function is also strictly convex, but not vice versa. If a one-dimensional function is twice continuously differentiable and the domain is the real line, then we can characterize it as follows:

For example, let be strictly convex, and suppose there is a sequence of points such that . Even though , the function is not strongly convex because will become arbitrarily small.

More generally, a differentiable function is called strongly convex with parameter if the following inequality holds for all points in its domain:[12] or, more generally, where is any inner product, and is the corresponding norm. Some authors, such as [13] refer to functions satisfying this inequality as elliptic functions.

An equivalent condition is the following:[14]

It is not necessary for a function to be differentiable in order to be strongly convex. A third definition[14] for a strongly convex function, with parameter is that, for all in the domain and

Notice that this definition approaches the definition for strict convexity as and is identical to the definition of a convex function when Despite this, functions exist that are strictly convex but are not strongly convex for any (see example below).

If the function is twice continuously differentiable, then it is strongly convex with parameter if and only if for all in the domain, where is the identity and is the Hessian matrix, and the inequality means that ispositive semi-definite. This is equivalent to requiring that the minimum eigenvalueof be at least for all If the domain is just the real line, then is just the second derivative so the condition becomes . If then this means the Hessian is positive semidefinite (or if the domain is the real line, it means that ), which implies the function is convex, and perhaps strictly convex, but not strongly convex.

Assuming still that the function is twice continuously differentiable, one can show that the lower bound of implies that it is strongly convex. Using Taylor's Theorem there exists such that Then by the assumption about the eigenvalues, and hence we recover the second strong convexity equation above.

A function is strongly convex with parameter m if and only if the function is convex.

A twice continuously differentiable function on a compact domain that satisfies for all is strongly convex. The proof of this statement follows from the extreme value theorem, which states that a continuous function on a compact set has a maximum and minimum.

Strongly convex functions are in general easier to work with than convex or strictly convex functions, since they are a smaller class. Like strictly convex functions, strongly convex functions have unique minima on compact sets.

Properties of strongly-convex functions

[edit]

Iff is a strongly-convex function with parameter m, then:[15]: Prop.6.1.4 

Uniformly convex functions

[edit]

A uniformly convex function,[16][17] with modulus , is a function that, for all in the domain and satisfies where is a function that is non-negative and vanishes only at 0. This is a generalization of the concept of strongly convex function; by taking we recover the definition of strong convexity.

It is worth noting that some authors require the modulus to be an increasing function,[17] but this condition is not required by all authors.[16]

Examples

[edit]

Functions of one variable

[edit]

Functions of n variables

[edit]

See also

[edit]
  • Convex analysis
  • Convex conjugate
  • Convex curve
  • Convex optimization
  • Geodesic convexity
  • Hahn–Banach theorem
  • Hermite–Hadamard inequality
  • Invex function
  • Jensen's inequality
  • K-convex function
  • Kachurovskii's theorem, which relates convexity to monotonicity of the derivative
  • Karamata's inequality
  • Logarithmically convex function
  • Pseudoconvex function
  • Quasiconvex function
  • Subderivative of a convex function
  • Notes

    [edit]
    1. ^ "Lecture Notes 2" (PDF). www.stat.cmu.edu. Retrieved 3 March 2017.
  • ^ "Concave Upward and Downward". Archived from the original on 2013-12-18.
  • ^ Stewart, James (2015). Calculus (8th ed.). Cengage Learning. pp. 223–224. ISBN 978-1305266643.
  • ^ W. Hamming, Richard (2012). Methods of Mathematics Applied to Calculus, Probability, and Statistics (illustrated ed.). Courier Corporation. p. 227. ISBN 978-0-486-13887-9. Extract of page 227
  • ^ Uvarov, Vasiliĭ Borisovich (1988). Mathematical Analysis. Mir Publishers. p. 126-127. ISBN 978-5-03-000500-3.
  • ^ Prügel-Bennett, Adam (2020). The Probability Companion for Engineering and Computer Science (illustrated ed.). Cambridge University Press. p. 160. ISBN 978-1-108-48053-6. Extract of page 160
  • ^ a b Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. ISBN 978-0-521-83378-3. Retrieved October 15, 2011.
  • ^ Donoghue, William F. (1969). Distributions and Fourier Transforms. Academic Press. p. 12. ISBN 9780122206504. Retrieved August 29, 2012.
  • ^ "If f is strictly convex in a convex set, show it has no more than 1 minimum". Math StackExchange. 21 Mar 2013. Retrieved 14 May 2016.
  • ^ Altenberg, L., 2012. Resolvent positive linear operators exhibit the reduction phenomenon. Proceedings of the National Academy of Sciences, 109(10), pp.3705-3710.
  • ^ "Strong convexity · Xingyu Zhou's blog". xingyuzhou.org. Retrieved 2023-09-27.
  • ^ Dimitri Bertsekas (2003). Convex Analysis and Optimization. Contributors: Angelia Nedic and Asuman E. Ozdaglar. Athena Scientific. p. 72. ISBN 9781886529458.
  • ^ Philippe G. Ciarlet (1989). Introduction to numerical linear algebra and optimisation. Cambridge University Press. ISBN 9780521339841.
  • ^ a b Yurii Nesterov (2004). Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers. pp. 63–64. ISBN 9781402075537.
  • ^ Nemirovsky and Ben-Tal (2023). "Optimization III: Convex Optimization" (PDF).
  • ^ a b C. Zalinescu (2002). Convex Analysis in General Vector Spaces. World Scientific. ISBN 9812380671.
  • ^ a b H. Bauschke and P. L. Combettes (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer. p. 144. ISBN 978-1-4419-9467-7.
  • ^ Kingman, J. F. C. (1961). "A Convexity Property of Positive Matrices". The Quarterly Journal of Mathematics. 12: 283–284. doi:10.1093/qmath/12.1.283.
  • ^ Cohen, J.E., 1981. Convexity of the dominant eigenvalue of an essentially nonnegative matrix. Proceedings of the American Mathematical Society, 81(4), pp.657-658.
  • References

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Convex_function&oldid=1227667234"

    Categories: 
    Convex analysis
    Generalized convexity
    Types of functions
    Hidden categories: 
    Use American English from March 2019
    All Wikipedia articles written in American English
    Articles with short description
    Short description matches Wikidata
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 7 June 2024, at 04:14 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki