Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Base 10  





2 Binary full reptend primes  





3 See also  





4 References  














Full reptend prime






Deutsch
Español
Français


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Innumber theory, a full reptend prime, full repetend prime, proper prime[1]: 166 orlong primeinbase b is an odd prime number p such that the Fermat quotient

(where p does not divide b) gives a cyclic number. Therefore, the base b expansion of repeats the digits of the corresponding cyclic number infinitely, as does that of with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime. That is, the multiplicative order ordpb = p − 1, which is equivalent to b being a primitive root modulo p.

The term "long prime" was used by John Conway and Richard Guy in their Book of Numbers. Confusingly, Sloane's OEIS refers to these primes as "cyclic numbers".

Base 10

[edit]

Base 10 may be assumed if no base is specified, in which case the expansion of the number is called a repeating decimal. In base 10, if a full reptend prime ends in the digit 1, then each digit 0, 1, ..., 9 appears in the reptend the same number of times as each other digit.[1]: 166  (For such primes in base 10, see OEISA073761.) In fact, in base b, if a full reptend prime ends in the digit 1, then each digit 0, 1, ..., b − 1 appears in the repetend the same number of times as each other digit, but no such prime exists when b = 12, since every full reptend prime in base 12 ends in the digit 5 or 7 in the same base. Generally, no such prime exists when biscongruent to 0 or 1 modulo 4.

The values of p for which this formula produces cyclic numbers in decimal are:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983, 1019, 1021, 1033, 1051... (sequence A001913 in the OEIS)

This sequence is the set of primes p such that 10 is a primitive root modulo p. Artin's conjecture on primitive roots is that this sequence contains 37.395...% of the primes.

Binary full reptend primes

[edit]

Inbase 2, the full reptend primes are: (less than 1000)

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947, ... (sequence A001122 in the OEIS)

For these primes, 2 is a primitive root modulo p, so 2n modulo p can be any natural number between 1 and p − 1.

These sequences of period p − 1 have an autocorrelation function that has a negative peak of −1 for shift of . The randomness of these sequences has been examined by diehard tests.[2]

Binary full reptend prime sequences (also called maximum-length decimal sequences) have found cryptographic and error-correction coding applications.[3] In these applications, repeating decimals to base 2 are generally used which gives rise to binary sequences. The maximum length binary sequence for (when 2 is a primitive root of p) is given by Kak.[4]

See also

[edit]

References

[edit]
  1. ^ a b Dickson, Leonard E., 1952, History of the Theory of Numbers, Volume 1, Chelsea Public. Co.
  • ^ Bellamy, J. "Randomness of D sequences via diehard testing". 2013. arXiv:1312.3618.
  • ^ Kak, Subhash, Chatterjee, A. "On decimal sequences". IEEE Transactions on Information Theory, vol. IT-27, pp. 647–652, September 1981.
  • ^ Kak, Subhash, "Encryption and error-correction using d-sequences". IEEE Trans. On Computers, vol. C-34, pp. 803–809, 1985.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Full_reptend_prime&oldid=1228761956"

    Category: 
    Classes of prime numbers
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 13 June 2024, at 01:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki