Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Primality testing  





3 Large primes  





4 Uses  





5 References  














Proth prime







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Proth prime
Named afterFrançois Proth
Publication year1878
Author of publicationProth, Francois
No. of known terms4304683178 below 272 [1]
Conjectured no. of termsInfinite
SubsequenceofProth numbers, prime numbers
Formulak × 2n + 1
First terms3, 5, 13, 17, 41, 97, 113
Largest known term10223 × 231172165 + 1 (as of December 2019)
OEIS index
  • Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m ≥ 1
  • AProth number is a natural number N of the form where k and n are positive integers, kisodd and . A Proth prime is a Proth number that is prime. They are named after the French mathematician François Proth.[2] The first few Proth primes are

    3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 (OEISA080076).

    It is still an open question whether an infinite number of Proth primes exist. It was shown in 2022 that the reciprocal sum of Proth primes converges to a real number near 0.747392479, substantially less than the value of 1.093322456 for the reciprocal sum of Proth numbers.[1]

    The primality of Proth numbers can be tested more easily than many other numbers of similar magnitude.

    Definition[edit]

    A Proth number takes the form where k and n are positive integers, is odd and . A Proth prime is a Proth number that is prime.[2][3] Without the condition that , all odd integers larger than 1 would be Proth numbers.[4]

    Primality testing[edit]

    The primality of a Proth number can be tested with Proth's theorem, which states that a Proth number is prime if and only if there exists an integer for which

    [3][5]

    This theorem can be used as a probabilistic test of primality, by checking for many random choices of whether If this fails to hold for several random , then it is very likely that the number iscomposite.[citation needed] This test is a Las Vegas algorithm: it never returns a false positive but can return a false negative; in other words, it never reports a composite number as "probably prime" but can report a prime number as "possibly composite".

    In 2008, Sze created a deterministic algorithm that runs in at most time, where Õ is the soft-O notation. For typical searches for Proth primes, usually is either fixed (e.g. 321 Prime Search or Sierpinski Problem) or of order (e.g. Cullen prime search). In these cases algorithm runs in at most , or time for all . There is also an algorithm that runs in time.[2][6]

    Fermat numbers are a special case of Proth numbers, wherein k=1. In such a scenario Pépin's test proves that only base a=3 need to be checked to deterministically verify or falsify the primality of a Fermat number.

    Large primes[edit]

    As of 2022, the largest known Proth prime is . It is 9,383,761 digits long.[7] It was found by Szabolcs Peter in the PrimeGrid volunteer computing project which announced it on 6 November 2016.[8] It is also the second largest known non-Mersenne prime.[9]

    The project Seventeen or Bust, searching for Proth primes with a certain to prove that 78557 is the smallest Sierpinski number (Sierpinski problem), has found 11 large Proth primes by 2007. Similar resolutions to the prime Sierpiński problem and extended Sierpiński problem have yielded several more numbers.

    Since divisors of Fermat numbers are always of the form , it is customary to determine if a new Proth prime divides a Fermat number.[10]

    As of July 2023, PrimeGrid is the leading computing project for searching for Proth primes. Its main projects include:

    k ∈ {21181, 22699, 24737, 55459, 67607, 79309, 79817, 91549, 99739, 131179, 152267, 156511, 163187, 200749, 209611, 222113, 225931, 227723, 229673, 237019, 238411}

    As of June 2023, the largest Proth primes discovered are:[11]

    rank prime digits when Comments Discoverer (Project) References
    1 10223 × 231172165 + 1 9383761 31 Oct 2016 Szabolcs Péter (Sierpinski Problem) [12]
    2 202705 × 221320516 + 1 6418121 1 Dec 2021 Pavel Atnashev (Extended Sierpinski Problem) [13]
    3 81 × 220498148 + 1 6170560 13 Jul 2023 Generalized Fermat F2(3 × 25124537) Ryan Propper (LLR) [11]
    4 7 × 220267500 + 1 6101127 21 Jul 2022 Divides F20267499(12) Ryan Propper (LLR) [11][14]
    5 168451 × 219375200 + 1 5832522 17 Sep 2017 Ben Maloney (Prime Sierpinski Problem) [15]
    6 7 × 218233956 + 1 5488969 1 Oct 2020 Divides Fermat F18233954 and F18233952(7) Ryan Propper [16][14]
    7 13 × 216828072 + 1 5065756 11 Oct 2023 Ryan Propper [11]
    8 3 × 216408818 + 1 4939547 28 Oct 2020 Divides F16408814(3), F16408817(5), and F16408815(8) James Brown (PrimeGrid) [14]
    9 11 × 215502315 + 1 4666663 8 Jan 2023 Divides F15502313(10) Ryan Propper [14]
    10 37 × 215474010 + 1 4658143 8 Nov 2022 Ryan Propper [14]
    11 (27658613 + 1) × 27658614 + 1 4610945 31 Jul 2020 Gaussian Mersenne norm Ryan Propper and Serge Batalov [11]
    12 13 × 215294536 + 1 4604116 30 Sep 2023 Ryan Propper [11]
    13 37 × 214166940 + 1 4264676 24 Jun 2022 Ryan Propper [11]
    14 99739 × 214019102 + 1 4220176 24 Dec 2019 Brian Niegocki (Extended Sierpinski Problem) [17]
    15 404849 × 213764867 + 1 4143644 10 Mar 2021 Generalized Cullen with base 131072 Ryan Propper and Serge Batalov [11]
    16 25 × 213719266 + 1 4129912 21 Sep 2022 F1(5 × 26859633) Ryan Propper [11]
    17 81 × 213708272 + 1 4126603 11 Oct 2022 F2(3 × 23427068) Ryan Propper [11]
    18 81 × 213470584 + 1 4055052 9 Oct 2022 F2(3 × 23367646) Ryan Propper [11]
    19 9 × 213334487 + 1 4014082 31 Mar 2020 Divides F13334485(3), F13334486(7), and F13334484(8) Ryan Propper [14]
    20 19249 × 213018586 + 1 3918990 26 Mar 2007 Konstantin Agafonov (Seventeen or Bust) [12]

    Uses[edit]

    Small Proth primes (less than 10200) have been used in constructing prime ladders, sequences of prime numbers such that each term is "close" (within about 1011) to the previous one. Such ladders have been used to empirically verify prime-related conjectures. For example, Goldbach's weak conjecture was verified in 2008 up to 8.875 × 1030 using prime ladders constructed from Proth primes.[18] (The conjecture was later proved by Harald Helfgott.[19][20][better source needed])

    Also, Proth primes can optimize den Boer reduction between the Diffie–Hellman problem and the Discrete logarithm problem. The prime number 55 × 2286 + 1 has been used in this way.[21]

    As Proth primes have simple binary representations, they have also been used in fast modular reduction without the need for pre-computation, for example by Microsoft.[22]

    References[edit]

    1. ^ a b Borsos, Bertalan; Kovács, Attila; Tihanyi, Norbert (2022), "Tight upper and lower bounds for the reciprocal sum of Proth primes", Ramanujan Journal, 59, Springer: 181–198, doi:10.1007/s11139-021-00536-2, hdl:10831/83020, S2CID 246024152
  • ^ a b c Sze, Tsz-Wo (2008). "Deterministic Primality Proving on Proth Numbers". arXiv:0812.2596 [math.NT].
  • ^ a b Weisstein, Eric W. "Proth Prime". mathworld.wolfram.com. Retrieved 2019-12-06.
  • ^ Weisstein, Eric W. "Proth Number". mathworld.wolfram.com. Retrieved 2019-12-07.
  • ^ Weisstein, Eric W. "Proth's Theorem". MathWorld.
  • ^ Konyagin, Sergei; Pomerance, Carl (2013), Graham, Ronald L.; Nešetřil, Jaroslav; Butler, Steve (eds.), "On Primes Recognizable in Deterministic Polynomial Time", The Mathematics of Paul Erdős I, Springer New York, pp. 159–186, doi:10.1007/978-1-4614-7258-2_12, ISBN 978-1-4614-7258-2
  • ^ Caldwell, Chris. "The Top Twenty: Proth". The Prime Pages.
  • ^ Van Zimmerman (30 Nov 2016) [9 Nov 2016]. "World Record Colbert Number discovered!". PrimeGrid.
  • ^ Caldwell, Chris. "The Top Twenty: Largest Known Primes". The Prime Pages.
  • ^ "The Prime Glossary: Fermat divisor". primes.utm.edu. Retrieved 14 November 2021.
  • ^ a b c d e f g h i j k Caldwell, Chris K. "The top twenty: Proth". The Top Twenty. Retrieved 6 December 2019.
  • ^ a b Goetz, Michael (27 February 2018). "Seventeen or Bust". PrimeGrid. Retrieved 6 Dec 2019.
  • ^ "PrimeGrid's Extended Sierpinski Problem Prime Search" (PDF). primegrid.com. PrimeGrid. Retrieved 28 December 2021.
  • ^ a b c d e f "New GFN factors". www.prothsearch.com. Retrieved 14 November 2021.
  • ^ "Official discovery of the prime number 168451×219375200+1" (PDF). PrimeGrid. Retrieved 6 Dec 2019.
  • ^ "Fermat factoring status". www.prothsearch.com. Retrieved 14 November 2021.
  • ^ "Official discovery of the prime number 99739×214019102+1" (PDF). PrimeGrid. 24 December 2019. Retrieved 14 November 2021.
  • ^ Helfgott, H. A.; Platt, David J. (2013). "Numerical Verification of the Ternary Goldbach Conjecture up to 8.875e30". arXiv:1305.3062 [math.NT].
  • ^ Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT].
  • ^ "Harald Andrés Helfgott". Alexander von Humboldt-Professur. Retrieved 2019-12-08.
  • ^ Brown, Daniel R. L. (24 Feb 2015). "CM55: special prime-field elliptic curves almost optimizing den Boer's reduction between Diffie–Hellman and discrete logs" (PDF). International Association for Cryptologic Research: 1–3.
  • ^ Acar, Tolga; Shumow, Dan (2010). "Modular Reduction without Pre-Computation for Special Moduli" (PDF). Microsoft Research.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Proth_prime&oldid=1216231049"

    Categories: 
    Classes of prime numbers
    Eponymous numbers in mathematics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from December 2019
    Articles containing potentially dated statements from 2022
    All articles containing potentially dated statements
    All articles lacking reliable references
    Articles lacking reliable references from December 2019
     



    This page was last edited on 29 March 2024, at 21:02 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki