Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Glossary of aerospace engineering







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 


















From Wikipedia, the free encyclopedia
 


This glossary of aerospace engineering terms pertains specifically to aerospace engineering, its sub-disciplines, and related fields including aviation and aeronautics. For a broad overview of engineering, see glossary of engineering.

  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • See also
  • References
  • A[edit]

    B[edit]

    This stabilizes the ballute as it decelerates through different flow regimes (from supersonic to subsonic).

    C[edit]

    , where Visvolume and p is pressure. The choice to define compressibility as the opposite of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. t is also known as reciprocal of bulk modulus(k) of elasticity of a fluid.

    D[edit]

    is the drag force, which is by definition the force component in the direction of the flow velocity,
    is the mass density of the fluid,[61]
    is the flow velocity relative to the object,
    is the reference area, and
    is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. In general, depends on the Reynolds number.

    E[edit]

    Given a domain and a once-weakly differentiable vector field which represents a fluid flow, such as a solution to the Navier-Stokes equations, its enstrophy is given by:[67]
    Where . This is quantity is the same as the squared seminorm of the solution in the Sobolev space ::::.
    In the case that the flow is incompressible, or equivalently that , the enstrophy can be described as the integral of the square of the vorticity ,[68]
    or, in terms of the flow velocity,
    In the context of the incompressible Navier-Stokes equations, enstrophy appears in the following useful result[20]
    The quantity in parentheses on the left is the energy in the flow, so the result says that energy declines proportional to the kinematic viscosity times the enstrophy.

    F[edit]

    G[edit]

    H[edit]

    The equation has the property that, if u and its first time derivative are arbitrarily specified initial data on the line t = 0 (with sufficient smoothness properties), then there exists a solution for all time t.

    I[edit]

    J[edit]

    K[edit]

    1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
    2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
    3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
    The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law helps to establish that when a planet is closer to the Sun, it travels faster. The third law expresses that the farther a planet is from the Sun, the slower its orbital speed, and vice versa.
    Isaac Newton showed in 1687 that relationships like Kepler's would apply in the Solar System as a consequence of his own laws of motion and law of universal gravitation.
    Kuethe and Schetzer state the Kutta condition as follows:[121]: § 4.11 
    A body with a sharp trailing edge which is moving through a fluid will create about itself a circulation of sufficient strength to hold the rear stagnation point at the trailing edge.
    In fluid flow around a body with a sharp corner, the Kutta condition refers to the flow pattern in which fluid approaches the corner from above and below, meets at the corner, and then flows away from the body. None of the fluid flows around the sharp corner.
    The Kutta condition is significant when using the Kutta–Joukowski theorem to calculate the lift created by an airfoil with a sharp trailing edge. The value of circulation of the flow around the airfoil must be that value that would cause the Kutta condition to exist.

    L[edit]

    Lagrangian mechanics defines a mechanical system to be a pair of a configuration space and a smooth function called Lagrangian. By convention, where and are the kinetic and potential energy of the system, respectively. Here and is the velocity vector at is tangential to (For those familiar with tangent bundles, and
    Given the time instants and Lagrangian mechanics postulates that a smooth path describes the time evolution of the given system if and only if is a stationary point of the action functional
    If is an open subset of and are finite, then the smooth path is a stationary point of if all its directional derivatives at vanish, i.e., for every smooth
    The function on the right-hand side is called perturbationorvirtual displacement. The directional derivative on the left is known as variation in physics and Gateaux derivative in mathematics.
    Lagrangian mechanics has been extended to allow for non-conservative forces.

    M[edit]

    In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second.

    N[edit]

    The Navier–Stokes equations mathematically express conservation of momentum and conservation of mass for Newtonian fluids. They are sometimes accompanied by an equation of state relating pressure, temperature and density.[154] They arise from applying Isaac Newton's second lawtofluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are a parabolic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g. they are never completely integrable).
    A newton is defined as 1 kg⋅m/s2, which is the force which gives a mass of 1 kilogram an acceleration of 1 metre per second, per second.
    This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning.[158] It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica ("the Principia"), first published on 5 July 1687. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him.
    In today's language, the law states that every point mass attracts every other point mass by a force acting along the line intersecting the two points. The force is proportional to the product of the two masses, and inversely proportional to the square of the distance between them.[159]
    The equation for universal gravitation thus takes the form:
    where F is the gravitational force acting between two objects, m1 and m2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.
    Law 1. A body continues in its state of rest, or in uniform motion in a straight line, unless acted upon by a force.
    Law 2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the force.
    Law 3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
    The three laws of motion were first stated by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687.[161] Newton used them to explain and investigate the motion of many physical objects and systems, which laid the foundation for Newtonian mechanics.[162]

    O[edit]

    P[edit]

    Define perpendicular axes , , and (which meet at origin ) so that the body lies in the plane, and the axis is perpendicular to the plane of the body. Let Ix, Iy and Iz be moments of inertia about axis x, y, z respectively. Then the perpendicular axis theorem states that[174]
    This rule can be applied with the parallel axis theorem and the stretch rule to find polar moments of inertia for a variety of shapes.
    If a planar object (or prism, by the stretch rule) has rotational symmetry such that and are equal,[175]
    then the perpendicular axes theorem provides the useful relationship:

    Q[edit]

    R[edit]

    S[edit]

    T[edit]

    The equation itself is:[184]
    where
    • is the object's final velocity along the x axis on which the acceleration is constant.
    • is the object's initial velocity along the x axis.
    • is the object's acceleration along the x axis, which is given as a constant.
    • is the object's change in position along the x axis, also called displacement.
    This equation is valid along any axis on which the acceleration is constant.

    U[edit]

    V[edit]

    Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an acceleration.

    W[edit]

    X[edit]

    Y[edit]

    Z[edit]

    See also[edit]

    References[edit]

    1. ^ Radiotelephony Manual. UK Civil Aviation Authority. 28 May 2015. ISBN 9780-11792-893-0. CAP413.
  • ^ Wyer, S.S., "A treatise on producer-gas and gas-producers", (1906) The Engineering and Mining Journal, London, p.23
  • ^ Perry, R.H. and Green, D.W, (2007) Perry's Chemical Engineers' Handbook (8th Edition), Section 12, Psychrometry, Evaporative Cooling and Solids Drying McGraw-Hill, ISBN 978-0-07-151135-3
  • ^ Crew, Henry (2008). The Principles of Mechanics. BiblioBazaar, LLC. p. 43. ISBN 978-0-559-36871-4.
  • ^ Bondi, Hermann (1980). Relativity and Common Sense. Courier Dover Publications. pp. 3. ISBN 978-0-486-24021-3.
  • ^ Lehrman, Robert L. (1998). Physics the Easy Way. Barron's Educational Series. pp. 27. ISBN 978-0-7641-0236-3.
  • ^ a b "AOS, TCA, and LOS". Northern Lights Software Associates. Retrieved 17 November 2015.
  • ^ McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  • ^ a b NRCC (2008). "Space Vision System Helps Astronauts See in Space". National Research Council of Canada. Archived from the original on June 3, 2008. Retrieved February 13, 2008.
  • ^ Sousa, V. C. (2011). "Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment". Smart Materials and Structures. 20 (9): 094007. Bibcode:2011SMaS...20i4007S. doi:10.1088/0964-1726/20/9/094007. S2CID 67767510.
  • ^ Ellis, P. D. M. (1994). "Laser palatoplasty for snoring due to palatal flutter: a further report". Clinical Otolaryngology. 19 (4): 350–1. doi:10.1111/j.1365-2273.1994.tb01245.x. PMID 7994895.
  • ^ Entropol. "Definition of Aeronautics". www.spacedictionary.com. Retrieved 2023-06-24.
  • ^ Encyclopedia of Aerospace Engineering. John Wiley & Sons, 2010. ISBN 978-0-470-75440-5.
  • ^ "Aircraft - Define Aircraft at Dictionary.com". Dictionary.com. Archived from the original on 28 March 2015. Retrieved 1 April 2015.
  • ^ "Different Kinds & Types of Aircraft". www.wingsoverkansas.com. Archived from the original on 21 November 2016.
  • ^ "Definition of AIRSHIP". merriam-webster.com. Retrieved 4 October 2016.
  • ^ Entropol. "Definition of Anemometer". www.spacedictionary.com. Retrieved 2023-06-24.
  • ^ "NASA aeronautics guided tour".
  • ^ "Glossary: Anticyclone". National Weather Service. Archived from the original on June 29, 2011. Retrieved January 19, 2010.
  • ^ a b "the definition of apsis". Dictionary.com.
  • ^ John, R. R., Bennett, S., and Connors, J. P., "Arcjet Engine Performance: Experiment and Theory," AIAA Journal, Vol. 1, No. 11, Nov. 1963. http://arc.aiaa.org/doi/pdf/10.2514/3.2103 Archived 2018-11-29 at the Wayback Machine
  • ^ Wallner, Lewis E. and Czika, Joseph, Jr, ARC-Jet Thrustor for Space Propulsion, NASA Technical note TN D-2868, NASA Lewis Research Center, June 1965 (accessed September 8, 2014)
  • ^ Kermode, A.C. (1972), Mechanics of Flight, Chapter 3, (p.103, eighth edition), Pitman Publishing Limited, London ISBN 0-273-31623-0
  • ^ "Asteroids". NASA – Jet Propulsion Laboratory. Retrieved 13 September 2010.
  • ^ Federal Aviation Administration (2008). "Chapter 15: Navigation" (PDF). Pilot's Handbook of Aeronautical Knowledge (PDF). US Dept. of Transportation. ISBN 978-1-56027-783-5. Archived from the original (PDF) on 18 June 2015. Retrieved 14 September 2015.
  • ^ Civil Aviation Safety Authority (2005). "Operational Notes on Non-Directional Beacons (NDB) and Associated Automatic Direction Finding (ADF)" (PDF). Government of Australia. Archived from the original (PDF) on 30 May 2009. Retrieved 11 February 2011.
  • ^ Graham, Jr, J.J. (December 1965). Development of Ballute / for Retardation of ARCAS Rocketsondes (PDF) (Report). Retrieved November 16, 2022.
  • ^ Breakthrough (2018-05-29), Progress in beamed energy propulsion | Kevin Parkin, retrieved 2018-06-07
  • ^ Rutstrum, Carl, The Wilderness Route Finder, University of Minnesota Press (2000), ISBN 0-8166-3661-3, p. 194
  • ^ Clancy, L. J. (1975). Aerodynamics. Wiley. ISBN 978-0-470-15837-1.
  • ^ Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. Cambridge: University Press. ISBN 978-0-521-66396-0.
  • ^ Curtis, Howard (2005). Orbital Mechanics for Engineering Students. Elsevier. p. 264. ISBN 0-7506-6169-0.
  • ^ Schnitt, Arthur (1998) Minimum Cost Design for Space Operations.
  • ^ "Rocket Staging". US: NASA. Archived from the original on June 2, 2016. Retrieved October 12, 2018.
  • ^ "Solid Rocket Boosters". US: NASA. Archived from the original on July 27, 2020. Retrieved October 12, 2018.
  • ^ Brain, Marshall (April 12, 2011). "How Airplane Cabin Pressurization Works". How Stuff Works. Archived from the original on January 15, 2013. Retrieved December 31, 2012.
  • ^ "Cable Sewing Knots", Popular Mechanics, 7 (5), Hearst Magazines: 550, May 1905, ISSN 0032-4558, Every lineman should know how to sew these knots.
  • ^ Wragg, D.; Historical Dictionary of Aviation, History Press (2008), Page 79.
  • ^ Clancy, L.; Aerodynamics, Halsted (1975), Page 293.
  • ^ Crane, Dale (1997), Dictionary of Aeronautical Terms (3rd ed.), Aviation Supplies & Academics, p. 86, ISBN 978-1-56027-287-8.
  • ^ Shepard, Dennis G. (1956). Principles of Turbomachinery. McMillan. ISBN 978-0-471-85546-0. LCCN 56002849.
  • ^ L. J. Clancy (1975), Aerodynamics, Section 5.2, Pitman Publishing Limited, London. ISBN 0-273-01120-0
  • ^ Houghton, E. L.; Carpenter, P.W. (2003). Butterworth Heinmann, ed. Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3. p.18
  • ^ "Introduction to Laser Technology". Melles Griot Catalog (PDF). Melles Griot. n.d. p. 36.6. Retrieved 25 August 2018.
  • ^ "Coefficient of compressibility - AMS Glossary". Glossary.AMetSoc.org. Retrieved 3 May 2017.
  • ^ "Isothermal compressibility of gases -". Petrowiki.org. 3 June 2015. Retrieved 3 May 2017.
  • ^ Ferdinand Pierre Beer, Elwood Russell Johnston, John T. DeWolf (1992), "Mechanics of Materials". (Book) McGraw-Hill Professional, ISBN 0-07-112939-1
  • ^ a b "Systems & Control Engineering FAQ | Electrical Engineering and Computer Science". engineering.case.edu. Case Western Reserve University. 20 November 2015. Retrieved 27 June 2017.
  • ^ Clancy, L.J. Aerodynamics, Section 11.6
  • ^ E. Rathakrishnan (3 September 2013). Gas Dynamics. PHI Learning Pvt. Ltd. p. 278. ISBN 978-81-203-4839-4.
  • ^ NACA technical report No.269 Archived 2011-07-16 at the Wayback Machine The Distribution of Loads Between the Wings of a Biplane Having Decalage (November 1927), p.18. Retrieved on 9 February 2009.
  • ^ Truesdell, C.; Noll, W. (2004). The non-linear field theories of mechanics (3rd ed.). Springer. p. 48.
  • ^ Wu, H.-C. (2005). Continuum Mechanics and Plasticity. CRC Press. ISBN 1-58488-363-4.
  • ^ Keys, C. N.; Stepniewski, W. Z. (1984). Rotary-wing aerodynamics. New York: Dover Publications. p. 3. ISBN 0-486-64647-5. It is interesting to note that there has always been a strong intuitive association of rotary-wing aircraft with low disc loading which is reflected in the commonly accepted name of rotor given to their lifting airscrews.
  • ^ Annex 10 to the Convention on International Civil Aviation, Volume I – Radio Navigation Aids; International Civil Aviation Organization; International Standards and Recommended Practices.
  • ^ "Definition of DRAG". www.merriam-webster.com. 19 May 2023.
  • ^ French (1970), p. 211, Eq. 7-20
  • ^ "What is Drag?". Archived from the original on 2010-05-24. Retrieved 2019-08-26.
  • ^ G. Falkovich (2011). Fluid Mechanics (A short course for physicists). Cambridge University Press. ISBN 978-1-107-00575-4.
  • ^ McCormick, Barnes W. (1979): Aerodynamics, Aeronautics, and Flight Mechanics. p. 24, John Wiley & Sons, Inc., New York, ISBN 0-471-03032-5
  • ^ Note that for the Earth's atmosphere, the air density can be found using the barometric formula. Air is 1.293 kg/m3 at 0°C and 1 atmosphere
  • ^ L. G. Napolitano (22 October 2013). Applications of Space Developments: Selected Papers from the XXXI International Astronautical Congress, Tokyo, 21 – 28 September 1980. Elsevier Science. pp. 134–. ISBN 978-1-4831-5976-8.
  • ^ a b Crane, Dale: Dictionary of Aeronautical Terms, third edition, p. 194. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2
  • ^ a b Aviation Publishers Co. Limited, From the Ground Up, p. 10 (27th revised edition) ISBN 0-9690054-9-0
  • ^ Air Transport Association (10 November 2011). "ATA Airline Handbook Chapter 5: How Aircraft Fly". Archived from the original on 10 November 2011. Retrieved 5 March 2013.
  • ^ "Empennage". Oxford Dictionaries Online. Oxford Dictionaries. Archived from the original on July 22, 2012. Retrieved 5 March 2013.
  • ^ Foiaş, Ciprian (2001). Navier-Stokes equations and turbulence. Cambridge: Cambridge University Press. pp. 28–29. ISBN 0-511-03936-0. OCLC 56416088.
  • ^ Doering, C. R. and Gibbon, J. D. (1995). Applied Analysis of the Navier-Stokes Equations, p. 11, Cambridge University Press, Cambridge. ISBN 052144568-X.
  • ^ Encyclopaedia of Physics (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1 (VHC Inc.) 0-89573-752-3
  • ^ Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  • ^ Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189–207 (E478) PDF
  • ^ Gablehouse, Charles (1969) Helicopters and Autogiros: a History of Rotating-Wing and V/STOL Aviation. Lippincott. p.206
  • ^ Stengel, Robert F. (2010), Aircraft Flight Dynamics (MAE 331) course summary, retrieved November 16, 2011
  • ^ Flightwise - Volume 2 - Aircraft Stability And Control, Chris Carpenter 1997, Airlife Publishing Ltd., ISBN 1 85310 870 7, p.145
  • ^ Depending on the vehicle's mass distribution, the effects of gravitational force may also be affected by attitude (and vice versa), but to a much lesser extent.
  • ^ "Fluid | Definition, Models, Newtonian Fluids, Non-Newtonian Fluids, & Facts". Encyclopedia Britannica. Retrieved 2 June 2021.
  • ^ a b White, Frank M. (2011). Fluid Mechanics (7th ed.). McGraw-Hill. ISBN 978-0-07-352934-9.
  • ^ a b "Fluid Mechanics/Fluid Statics/mentals of Fluid Statics - Wikibooks, open books for an open world". en.wikibooks.org. Retrieved 2021-04-01.
  • ^ a b "Hydrostatics". Merriam-Webster. Retrieved 11 September 2018.
  • ^ "An Assessment of Flight Crew Experiences with FANS-1 ATC Data Link" (PDF). Archived from the original (PDF) on 2021-10-17. Retrieved 2021-09-23.
  • ^ Crane, Dale: Dictionary of Aeronautical Terms, third edition, p. 224. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2.
  • ^ Sparke, L. S.; Gallagher, J. S. III (2000). Galaxies in the Universe: An Introduction. Cambridge University Press. ISBN 978-0-521-59740-1. Archived from the original on March 24, 2021. Retrieved July 25, 2018.
  • ^ Hupp, E.; Roy, S.; Watzke, M. (August 12, 2006). "NASA Finds Direct Proof of Dark Matter". NASA. Archived from the original on March 28, 2020. Retrieved April 17, 2007.
  • ^ Uson, J. M.; Boughn, S. P.; Kuhn, J. R. (1990). "The central galaxy in Abell 2029 – An old supergiant". Science. 250 (4980): 539–540. Bibcode:1990Sci...250..539U. doi:10.1126/science.250.4980.539. PMID 17751483. S2CID 23362384.
  • ^ Hoover, A. (June 16, 2003). "UF Astronomers: Universe Slightly Simpler Than Expected". Hubble News Desk. Archived from the original on July 20, 2011. Retrieved March 4, 2011. Based upon: Graham, A. W.; Guzman, R. (2003). "HST Photometry of Dwarf Elliptical Galaxies in Coma, and an Explanation for the Alleged Structural Dichotomy between Dwarf and Bright Elliptical Galaxies". The Astronomical Journal. 125 (6): 2936–2950. arXiv:astro-ph/0303391. Bibcode:2003AJ....125.2936G. doi:10.1086/374992. S2CID 13284968.
  • ^ Jarrett, T. H. "Near-Infrared Galaxy Morphology Atlas". California Institute of Technology. Archived from the original on August 2, 2012. Retrieved January 9, 2007.
  • ^ FAA Glider handbook Archived 2009-02-06 at the Wayback Machine
  • ^ (1) "GPS: Global Positioning System (or Navstar Global Positioning System)" Wide Area Augmentation System (WAAS) Performance Standard, Section B.3, Abbreviations and Acronyms.
    (2) "GLOBAL POSITIONING SYSTEM WIDE AREA AUGMENTATION SYSTEM (WAAS) PERFORMANCE STANDARD" (PDF). January 3, 2012. Archived from the original (PDF) on April 27, 2017.
  • ^ "Global Positioning System Standard Positioning Service Performance Standard : 4th Edition, September 2008" (PDF). Archived (PDF) from the original on April 27, 2017. Retrieved April 21, 2017.
  • ^ "What is a GPS?". Library of Congress. Archived from the original on January 31, 2018. Retrieved January 28, 2018.
  • ^ E.M. Cliff. "Goddard Problem (slides)" (PDF). Archived (PDF) from the original on 2010-06-24. Retrieved 2010-04-29.
  • ^ Boris Garfinkel. A Solution of the Goddard Problem (Report). Archived from the original on September 27, 2021.
  • ^ "2022 CODATA Value: Newtonian constant of gravitation". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  • ^ "Section 1: Environment, Chapter 4: Trajectories". Basics of Space Flight. NASA. Retrieved 21 July 2018.
  • ^ "dict.cc dictionary :: gravitas :: English-Latin translation". Archived from the original on 13 August 2021. Retrieved 11 September 2018.
  • ^ Comins, Neil F.; Kaufmann, William J. (2008). Discovering the Universe: From the Stars to the Planets. MacMillan. p. 347. Bibcode:2009dufs.book.....C. ISBN 978-1429230421. Archived from the original on 25 January 2020. Retrieved 8 May 2018.
  • ^ Hofer, Richard R. (June 2004). Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters. NASA/CR—2004-21309 (Report). NASA STI Program. hdl:2060/20040084644.
  • ^ "GIRD-09". Encyclopedia Astronautix. Archived from the original on December 21, 2016. Retrieved June 25, 2017.
  • ^ Galison, P.; Roland, A., eds. (2000). Atmospheric Flight in the Twentieth Century. Springer. p. 90. ISBN 978-94-011-4379-0.
  • ^ "Specific Heat Capacity, Calorically Imperfect Gas". NASA. Retrieved 2019-12-27.
  • ^ Samuel, Jacob; Franklin, Cory (2008). Common Surgical Diseases. New York: Springer. pp. 391–94. doi:10.1007/978-0-387-75246-4_97. ISBN 978-0387752457.
  • ^ Das, K. K., Honnutagi, R., Mullur, L., Reddy, R. C., Das, S., Majid, D. S. A., & Biradar, M. S. (2019). "Heavy metals and low-oxygen microenvironment – its impact on liver metabolism and dietary supplementation". In Dietary Interventions in Liver Disease. pp. 315–32. Academic Press.
  • ^ a b Clancy, L.J. (1975), Aerodynamics, Section 3.9, Pitman Publishing Limited, London. ISBN 0-273-01120-0
  • ^ Ross, S. D. (2006). "The Interplanetary Transport Network" (PDF). American Scientist. 94 (3): 230–237. doi:10.1511/2006.59.994. Archived from the original (PDF) on 2013-10-20. Retrieved 2021-09-30.
  • ^ "The Interplanetary Superhighway; Shane Ross; Virginia Tech". Archived from the original on 2019-06-15. Retrieved 2021-09-30.
  • ^ Interplanetary Flight: an introduction to astronautics. London: Temple Press, Arthur C. Clarke, 1950
  • ^ Mauldin, John H. (May 1992). Prospects for interstellar travel. Published for the American Astronautical Society by Univelt. Interstellar travel.
  • ^ "ISRO – Vision and Mission Statements". ISRO. Archived from the original on 4 September 2015. Retrieved 27 August 2015.
  • ^ TE Narasimhan (2014-01-07). "ISRO on cloud nine as India joins "cryo club"". Business Standard. Chennai. Retrieved 2021-03-12.
  • ^ Harvey, Brian; Smid, Henk H. F.; Pirard, Theo (2011). Emerging Space Powers: The New Space Programs of Asia, the Middle East and South-America. Springer Science & Business Media. pp. 144–. ISBN 978-1-4419-0874-2. Archived from the original on 12 October 2017. Retrieved 14 April 2019.
  • ^ Hitchens, Frank (2015). The Encyclopedia of Aerodynamics. Andrews UK Limited. ISBN 9781785383250. Retrieved 13 September 2017.
  • ^ Administration, Federal Aviation (2017). Pilot's Handbook of Aeronautical Knowledge. Skyhorse Publishing, Inc. ISBN 9781510726185. Retrieved 13 September 2017.
  • ^ Stenger, Richard (2002-05-03). "Scientist: Space weapons pose debris threat". CNN.com. Archived from the original on 2012-09-30. Retrieved 2011-03-17.
  • ^ Olson, Steve (July 1998). "The Danger of Space Junk – 98.07". The Atlantic. Retrieved 2020-06-18 – via TheAtlantic.com.
  • ^ a b Kessler, Donald J.; Cour-Palais, Burton G. (1978). "Collision Frequency of Artificial Satellites: The Creation of a Debris Belt". Journal of Geophysical Research. 83 (A6): 2637–2646. Bibcode:1978JGR....83.2637K. doi:10.1029/JA083iA06p02637.
  • ^ Jain, Mahesh C. (2009). Textbook of Engineering Physics (Part I). PHI Learning Pvt. p. 9. ISBN 978-81-203-3862-3. Archived from the original on 2020-08-04. Retrieved 2018-06-21., Chapter 1, p. 9 Archived 2020-08-04 at the Wayback Machine
  • ^ Kytoon
  • ^ Eden, Maxwell (2002). The Magnificent Book of Kites: Explorations in Design, Construction, Enjoyment & Flight. New York: Sterling Publishing Company, Inc. p. 18. ISBN 9781402700941.
  • ^ "What is a kite? A kite is ________. Definition of "kite" in the world".
  • ^ "Etmology online".
  • ^ A.M. Kuethe and J.D. Schetzer (1959) Foundations of Aerodynamics, 2nd edition, John Wiley & Sons ISBN 0-471-50952-3
  • ^ Anderson, J. D. Jr. (1989). "Pressure, Temperature, and Density Altitudes". Introduction to Flight (3rd ed.). New York: McGraw-Hill. pp. 100–103. ISBN 0-07-001641-0.
  • ^ Liu, L. Q.; Zhu, J. Y.; Wu, J. Z. (2015). "Lift and drag in two-dimensional steady viscous and compressible flow". Journal of Fluid Mechanics. 784: 304–341. Bibcode:2015JFM...784..304L. doi:10.1017/jfm.2015.584. S2CID 125643946.
  • ^ Weisstein, Eric. "Lagrange Points". Eric Weisstein's World of Physics.
  • ^ Dr Claude Phipps (2011). "Removing Orbital Debris with Lasers". Advances in Space Research. 49 (9): 1283–1300. arXiv:1110.3835. Bibcode:2012AdSpR..49.1283P. doi:10.1016/j.asr.2012.02.003.
  • ^ Shen, Shuangyan; Jin, Xing; Hao, Chang (2014-08-01). "Cleaning space debris with a space-based laser system". Chinese Journal of Aeronautics. 27 (4): 805–811. Bibcode:2014ChJAn..27..805S. doi:10.1016/j.cja.2014.05.002. ISSN 1000-9361.
  • ^ Wen, Quan; Yang, Liwei; Zhao, Shanghong; Fang, Yingwu; Wang, Yi; Hou, Rui (2018-02-01). "Impacts of orbital elements of space-based laser station on small scale space debris removal". Optik. 154: 83–92. Bibcode:2018Optik.154...83W. doi:10.1016/j.ijleo.2017.10.008. ISSN 0030-4026.
  • ^ Lin; Singer (February 15, 2018). "Is China's space laser for real?". Popular Science. Retrieved 2021-04-10.
  • ^ Venton, Danielle (May 12, 2015). "The Mad Plan to Clean Up Space Junk With a Laser Cannon". Wired. ISSN 1059-1028. Retrieved 2021-04-10.
  • ^ Walsh, Kris. "Launch Period vs. Launch Window". Genesis Mission. NASA JPL. Retrieved 3 May 2018.
  • ^ Sergeyevsky, Andrey (September 15, 1983). Interplanetary Mission Design Handbook, Volume I, Part 2 (Report). NASA JPL. CiteSeerX 10.1.1.693.6602.
  • ^ "What is a launch window?". Archived from the original on 2023-04-11. Retrieved 2021-10-08.
  • ^ "Introduction to the GMAT Software" (PDF). NASA Goddard Space Flight Center. Oct 29, 2014. Archived from the original (PDF) on 3 May 2018. Retrieved 3 May 2018.
  • ^ "Document Requirements Description" (PDF). ExoMars Project. European Space Agency. 16 July 2007. Retrieved 3 May 2018.
  • ^ Crane, Dale: Dictionary of Aeronautical Terms, third edition, page 305. Aviation Supplies & Academics, 1997. ISBN 1-56027-287-2
  • ^ Kumar, Bharat (2005). An Illustrated Dictionary of Aviation. New York: McGraw Hill. ISBN 0-07-139606-3.
  • ^ Clancy, L. J. (1975). Aerodynamics. New York: John Wiley & Sons. Sections 4.15 & 5.4.
  • ^ Abbott, Ira H., and Doenhoff, Albert E. von: Theory of Wing Sections. Section 1.2
  • ^ Myrabo, L.N. (1976). "MHD propulsion by absorption of laser radiation" (PDF). Journal of Spacecraft and Rockets. 13 (8): 466–472. Bibcode:1976JSpRo..13..466M. doi:10.2514/3.27919.
  • ^ Myrabo, Leik N.; Messitt, Donald G.; Mead Jr., Franklin B. (January 1998). "Ground and flight tests of a laser propelled vehicle" (PDF). AIAA-98-1001. 36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV. doi:10.2514/6.1998-1001.
  • ^ Demerjian, Ave (20 February 2009). "Laser-powered aircraft are the future of flight. Maybe". Wired. Retrieved 2018-04-05.
  • ^ Hsu, Jeremy (29 July 2009). "Laser-Powered Lightcraft 'At the Cusp of Commercial Reality'". Popular Science. Retrieved 2018-04-05.
  • ^ "Air - Molecular Weight". www.engineeringtoolbox.com. Retrieved 2018-01-16.
  • ^ Larson, W.J.; Wertz, J.R. (1992). Space Mission Analysis and Design. Boston: Kluver Academic Publishers.
  • ^ "Current Catalog Files". Archived from the original on June 26, 2018. Retrieved July 13, 2018. LEO: Mean Motion > 11.25 & Eccentricity < 0.25
  • ^ Sampaio, Jarbas; Wnuk, Edwin; Vilhena de Moraes, Rodolpho; Fernandes, Sandro (2014-01-01). "Resonant Orbital Dynamics in LEO Region: Space Debris in Focus". Mathematical Problems in Engineering. 2014: Figure 1: Histogram of the mean motion of the cataloged objects. doi:10.1155/2014/929810. Archived from the original on 2021-10-01. Retrieved 2018-07-13.
  • ^ Young, Donald F.; Bruce R. Munson; Theodore H. Okiishi; Wade W. Huebsch (2010). A Brief Introduction to Fluid Mechanics (5 ed.). John Wiley & Sons. p. 95. ISBN 978-0-470-59679-1.
  • ^ Graebel, W.P. (2001). Engineering Fluid Mechanics. Taylor & Francis. p. 16. ISBN 978-1-56032-733-2.
  • ^ D. G. Andrews and R. Zubrin, "Magnetic Sails and Interstellar Travel", Paper IAF-88-553, 1988
  • ^ R. Zubrin. (1999) Entering Space: Creating a Spacefaring Civilization. New York: Jeremy P. Tarcher/Putnam. ISBN 0-87477-975-8.
  • ^ "The definition of mass".
  • ^ "Brief History of Rockets".
  • ^ McLean, Doug (2012). "Continuum Fluid Mechanics and the Navier-Stokes Equations". Understanding Aerodynamics: Arguing from the Real Physics. John Wiley & Sons. pp. 13–78. ISBN 9781119967514. The main relationships comprising the NS equations are the basic conservation laws for mass, momentum, and energy. To have a complete equation set we also need an equation of state relating temperature, pressure, and density...
  • ^ Fritz Rohrlich (25 August 1989). From Paradox to Reality: Our Basic Concepts of the Physical World. Cambridge University Press. pp. 28–. ISBN 978-0-521-37605-1.
  • ^ Klaus Mainzer (2 December 2013). Symmetries of Nature: A Handbook for Philosophy of Nature and Science. Walter de Gruyter. pp. 8–. ISBN 978-3-11-088693-1.
  • ^ "Physics: Fundamental Forces and the Synthesis of Theory | Encyclopedia.com". www.encyclopedia.com.
  • ^ Isaac Newton: "In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction": "Principia", Book 3, General Scholium, at p.392 in Volume 2 of Andrew Motte's English translation published 1729.
  • ^ Proposition 75, Theorem 35: p. 956 – I.Bernard Cohen and Anne Whitman, translators: Isaac Newton, The Principia: Mathematical Principles of Natural Philosophy. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 ISBN 0-520-08816-6 ISBN 0-520-08817-4
  • ^ Thornton, Stephen T.; Marion, Jerry B. (2004). Classical Dynamics of Particles and Systems (5th ed.). Brooke Cole. p. 49. ISBN 0-534-40896-6.
  • ^ See the Principia on line at Andrew Motte Translation
  • ^ "Axioms, or Laws of Motion". gravitee.tripod.com. Retrieved 2021-02-14.
  • ^ orbit (astronomy) – Britannica Online Encyclopedia
  • ^ The Space Place :: What's a Barycenter
  • ^ Kuhn, The Copernican Revolution, pp. 238, 246–252
  • ^ "Orbital Mechanics". Archived from the original on 2013-12-16. Retrieved 2013-12-13.
  • ^ "node". Columbia Encyclopedia (6th ed.). New York: Columbia University Press. 2004. Archived from the original on March 9, 2007. Retrieved May 17, 2007.
  • ^ Moulton, Forest R. (1970) [1902]. Introduction to Celestial Mechanics (2nd revised ed.). Mineola, New York: Dover. pp. 322–23. ISBN 0486646874.
  • ^ Arthur Erich Haas (1928). Introduction to theoretical physics.
  • ^ a b Anderson, John D. Jr. (1991). Fundamentals of aerodynamics (2nd ed.). New York: McGraw-Hill. ISBN 0-07-001679-8.
  • ^ Anderson, John D. Jr. (2016). Introduction to flight (Eighth ed.). New York, NY: McGraw Hill Education. p. 242. ISBN 978-0-07-802767-3.
  • ^ Clancy, L.J. (1975). Aerodynamics, Sub-section 5.9. Pitman Publishing. ISBN 0 273 01120 0
  • ^ Pilot's Handbook of Aeronautical Knowledge (PDF). FAA. p. Chapter 5, Aerodynamics of flight.
  • ^ Paul A. Tipler (1976). "Ch. 12: Rotation of a Rigid Body about a Fixed Axis". Physics. Worth Publishers Inc. ISBN 0-87901-041-X.
  • ^ Obregon, Joaquin (2012). Mechanical Simmetry. AuthorHouse. ISBN 978-1-4772-3372-6.
  • ^ πλάσμα Archived 18 June 2013 at the Wayback Machine, Henry George Liddell, Robert Scott, A Greek English Lexicon, on Perseus
  • ^ Chu, P.K.; Lu, XinPel (2013). Low Temperature Plasma Technology: Methods and Applications. CRC Press. p. 3. ISBN 978-1-4665-0990-0.
  • ^ Piel, A. (2010). Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas. Springer. pp. 4–5. ISBN 978-3-642-10491-6. Archived from the original on 5 January 2016.
  • ^ Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. p. 295. ISBN 978-0-521-39788-9. Archived from the original on 15 January 2018.
  • ^ Aschwanden, M. J. (2004). Physics of the Solar Corona. An Introduction. Praxis Publishing. ISBN 978-3-540-22321-4.
  • ^ Chiuderi, C.; Velli, M. (2015). Basics of Plasma Astrophysics. Springer. p. 17. ISBN 978-88-470-5280-2.
  • ^ "Rogallo Wing -the story told by NASA". History.nasa.gov. Retrieved 2012-12-23.
  • ^ "Terminal Velocity". NASA Glenn Research Center. Archived from the original on February 23, 2009. Retrieved March 4, 2009.
  • ^ Leandro Bertoldo (2008). Fundamentos do Dinamismo (in Portuguese). Joinville: Clube de Autores. pp. 41–42.
  • ^ Metha, Rohit. "11". The Principles of Physics. p. 378.
  • ^ "Long-range" in the context of the time. See NASA history article Archived 7 January 2009 at the Wayback Machine
  • ^ Neufeld, Michael J. (1995). The Rocket and the Reich: Peenemünde and the Coming of the Ballistic Missile Era. New York: The Free Press. pp. 158, 160–162, 190. ISBN 9780029228951. Archived from the original on 28 October 2019. Retrieved 15 November 2019.
  • ^ Ad Astra Rocket Company. "VASIMR". Ad Astra Rocket Company. Archived from the original on July 7, 2019. Retrieved July 9, 2019.
  • ^ Barnes, H. A.; Hutton, J. F.; Walters, K. (1989). An introduction to rheology (5. impr. ed.). Amsterdam: Elsevier. p. 12. ISBN 978-0-444-87140-4.
  • ^ Symon, Keith R. (1971). Mechanics (3rd ed.). Addison-Wesley. ISBN 978-0-201-07392-8. Archived from the original on 2020-03-11. Retrieved 2019-09-18.
  • ^ a b Peppler, I.L.: From The Ground Up, page 23. Aviation Publishers Co. Limited, Ottawa Ontario, Twenty Seventh Revised Edition, 1996. ISBN 0-9690054-9-0
  • ^ Wind Turbine Vortex Generators Archived 2015-03-23 at the Wayback Machine, UpWind Solutions.
  • ^ a b Micro AeroDynamics (2003). "How Micro VGs Work". Retrieved 2008-03-15.
  • ^ Anderson, John D. Jr. (1991). Fundamentals of aerodynamics (2nd ed.). New York: McGraw-Hill. pp. 492, 573. ISBN 0-07-001679-8.
  • ^ Clancy, L.J. (1975), Aerodynamics, Section 11.7
  • ^ Richard C. Morrison (1999). "Weight and gravity - the need for consistent definitions". The Physics Teacher. 37 (1): 51. Bibcode:1999PhTea..37...51M. doi:10.1119/1.880152.
  • ^ Igal Galili (2001). "Weight versus gravitational force: historical and educational perspectives". International Journal of Science Education. 23 (10): 1073. Bibcode:2001IJSEd..23.1073G. doi:10.1080/09500690110038585. S2CID 11110675.
  • ^ Gat, Uri (1988). "The weight of mass and the mess of weight". In Richard Alan Strehlow (ed.). Standardization of Technical Terminology: Principles and Practice – second volume. ASTM International. pp. 45–48. ISBN 978-0-8031-1183-7.
  • ^ Jane Grossman, Michael Grossman, Robert Katz. The First Systems of Weighted Differential and Integral Calculus, ISBN 0-9771170-1-4, 1980.
  • ^ Jane Grossman.Meta-Calculus: Differential and Integral, ISBN 0-9771170-2-2, 1981.
  • ^ Smithsonian Air and Space museum collection (click on Long Description)
  • ^ Orville Wright note
  • ^ "Wright Brothers". Smithsonian National Air and Space Museum. Archived from the original on 29 September 2021. Retrieved 29 September 2021.
    1. ^ Geostationary orbit and Geosynchronous (equatorial) orbit are used somewhat interchangeably in sources.
  • ^ "Newtonian constant of gravitation" is the name introduced for G by Boys (1894). Use of the term by T.E. Stern (1928) was misquoted as "Newton's constant of gravitation" in Pure Science Reviewed for Profound and Unsophisticated Students (1930), in what is apparently the first use of that term. Use of "Newton's constant" (without specifying "gravitation" or "gravity") is more recent, as "Newton's constant" was also used for the heat transfer coefficientinNewton's law of cooling, but has by now become quite common, e.g. Calmet et al, Quantum Black Holes (2013), p. 93; P. de Aquino, Beyond Standard Model Phenomenology at the LHC (2013), p. 3. The name "Cavendish gravitational constant", sometimes "Newton–Cavendish gravitational constant", appears to have been common in the 1970s to 1980s, especially in (translations from) Soviet-era Russian literature, e.g. Sagitov (1970 [1969]), Soviet Physics: Uspekhi 30 (1987), Issues 1–6, p. 342 [etc.]. "Cavendish constant" and "Cavendish gravitational constant" is also used in Charles W. Misner, Kip S. Thorne, John Archibald Wheeler, "Gravitation", (1973), 1126f. Colloquial use of "Big G", as opposed to "little g" for gravitational acceleration dates to the 1960s (R.W. Fairbridge, The encyclopedia of atmospheric sciences and astrogeology, 1967, p. 436; note use of "Big G's" vs. "little g's" as early as the 1940s of the Einstein tensor Gμν vs. the metric tensor gμν, Scientific, medical, and technical books published in the United States of America: a selected list of titles in print with annotations: supplement of books published 1945–1948, Committee on American Scientific and Technical Bibliography National Research Council, 1950, p. 26).
  • ^ Cavendish determined the value of G indirectly, by reporting a value for the Earth's mass, or the average density of Earth, as 5.448 g⋅cm−3.
  • ^ ISO 15919: Bhāratīya Antarikṣ Anusandhān Saṅgaṭhan Bhāratīya Antrikṣ Anusandhān Saṅgaṭhan
  • ^ CNSA (China), ESA (most of Europe), ISRO, (India), JAXA (Japan), NASA (United States) and Roscosmos (Russia) are space agencies with full launch capabilities.
    1. ^ It was shown separately that separated spherically symmetrical masses attract and are attracted as if all their mass were concentrated at their centers.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Glossary_of_aerospace_engineering&oldid=1227908762"

    Categories: 
    Aerospace engineering
    Engineering disciplines
    Glossaries of science
    Indexes of engineering topics
    Glossaries of technology
    Hidden categories: 
    Webarchive template wayback links
    CS1 Portuguese-language sources (pt)
    Articles with short description
    Short description with empty Wikidata description
    Articles containing Ancient Greek (to 1453)-language text
    Pages using Template:Physical constants with rounding
    All articles with unsourced statements
    Articles with unsourced statements from July 2019
    Articles to be expanded from March 2022
    All articles to be expanded
    Articles with empty sections from March 2022
    All articles with empty sections
    Articles using small message boxes
    Articles containing German-language text
    Wikipedia glossaries using unordered lists
     



    This page was last edited on 8 June 2024, at 12:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki