Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Preparation  





2 Crystallization  





3 Applications  





4 Stability  





5 Toxicity  





6 Structure  





7 See also  





8 References  





9 Cited sources  





10 External links  














Lead(II) iodide






Afrikaans
العربية
تۆرکجه
Català
Čeština
Deutsch
Español
Esperanto
فارسی
Français
ि
Italiano
Македонски

Polski
Português
Română
Русский
Slovenčina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி

Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Lead iodide)

Lead(II) iodide
Lead(II) iodide
Names
Other names

Plumbous iodide

Identifiers

CAS Number

3D model (JSmol)

ChemSpider
ECHA InfoCard 100.030.220 Edit this at Wikidata
EC Number
  • 233-256-9

PubChem CID

UNII
UN number 2291 3077

CompTox Dashboard (EPA)

  • InChI=1S/2HI.Pb/h2*1H;/q;;+2/p-2 checkY

    Key: RQQRAHKHDFPBMC-UHFFFAOYSA-L checkY

  • InChI=1/2HI.Pb/h2*1H;/q;;+2/p-2

    Key: RQQRAHKHDFPBMC-NUQVWONBAP

  • I[Pb]I

Properties

Chemical formula

PbI
2
Molar mass 461.01 g/mol
Appearance bright yellow powder
Odor odorless
Density 6.16 g/cm3[1]
Melting point 410 °C (770 °F; 683 K)[1]
Boiling point 872 °C (1,602 °F; 1,145 K) decomp.[1]

Solubility in water

  • 0.44 g/L (0 °C)
  • 0.76 g/L (20 °C)[1][2]
  • 4.1 g/L (100 °C)[3][4]
  • Solubility product (Ksp)

    4.41×10−9 (20 °C)
    Solubility
  • soluble in alkalis, KI solution, methyl isopropyl ketone[5]
  • Band gap 2.34 eV (direct)[6][7]

    Magnetic susceptibility (χ)

    −126.5·10−6cm3/mol[8]
    Structure[9]

    Crystal structure

    Hexagonal hP6

    Space group

    P63mc, No. 186

    Lattice constant

    a = 0.4556 nm, b = 0.4556 nm, c = 1.3973 nm

    α = 90°, β = 90°, γ = 120°°

    Formula units (Z)

    2

    Coordination geometry

    octahedral
    Thermochemistry[10]

    Heat capacity (C)

    77.4 J/(mol·K)

    Std molar
    entropy
    (S298)

    174.9 J/(mol·K)

    Std enthalpy of
    formation
    fH298)

    -175.5 kJ/mol

    Gibbs free energy fG)

    -173.6 kJ/mol
    Hazards
    GHS labelling:

    Pictograms

    GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H302, H332, H360, H373, H410

    Precautionary statements

    P201, P202, P260, P261, P264, P270, P271, P273, P281, P301+P312, P304+P312, P304+P340, P308+P313, P312, P314, P330, P391, P405, P501
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
    3
    0
    0
    Flash point Non-flammable
    Related compounds

    Other anions

  • Lead(II) chloride
  • Lead(II) bromide
  • Other cations

    Tin(II) iodide

    Related compounds

  • Bismuth(III) iodide
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Lead(II) iodide (orlead iodide) is a chemical compound with the formula PbI
    2
    . At room temperature, it is a bright yellow odorless crystalline solid, that becomes orange and red when heated.[11] It was formerly called plumbous iodide.

    The compound currently has a few specialized applications, such as the manufacture of solar cells,[12] X-rays and gamma-ray detectors.[13] Its preparation is an entertaining and popular demonstration in chemistry education, to teach topics such as precipitation reactions and stoichiometry.[14] It is decomposed by light at temperatures above 125 °C (257 °F), and this effect has been used in a patented photographic process.[4][15]

    Lead iodide was formerly employed as a yellow pigment in some paints, with the name iodide yellow. However, that use has been largely discontinued due to its toxicity and poor stability.[16]

    Preparation[edit]

    PbI
    2
    is commonly synthesized via a precipitation reaction between potassium iodide KI and lead(II) nitrate Pb(NO
    3
    )2 in water solution:

    Pb(NO3)2 + 2 KI → PbI2 + 2 KNO3

    While the potassium nitrate KNO
    3
    is soluble, the lead iodide PbI
    2
    is nearly insoluble at room temperature, and thus precipitates out.[17]

    Other soluble compounds containing lead(II) and iodide can be used instead, for example lead(II) acetate[12] and sodium iodide.

    The compound can also be synthesized by reacting iodine vapor with molten lead between 500 and 700 °C.[18]

    A thin film of PbI
    2
    can also be prepared by depositing a film of lead sulfide PbS and exposing it to iodine vapor, by the reaction

    PbS + I2 → PbI2 + S

    The sulfur is then washed with dimethyl sulfoxide.[19]

    Crystallization[edit]

    Lead iodide prepared from cold solutions usually consists of many small hexagonal platelets, giving the yellow precipitate a silky appearance. Larger crystals can be obtained by exploiting the fact that solubility of lead iodide in water (like those of lead chloride and lead bromide) increases dramatically with temperature. The compound is colorless when dissolved in hot water, but crystallizes on cooling as thin but visibly larger bright yellow flakes, that settle slowly through the liquid — a visual effect often described as "golden rain".[20] Larger crystals can be obtained by autoclaving the PbI
    2
    with water under pressure at 200 °C.[21]

    Even larger crystals can be obtained by slowing down the common reaction. A simple setup is to submerge two beakers containing the concentrated reactants in a larger container of water, taking care to avoid currents. As the two substances diffuse through the water and meet, they slowly react and deposit the iodide in the space between the beakers.[22]

    Another similar method is to react the two substances in a gel medium, that slows down the diffusion and supports the growing crystal away from the container's walls. Patel and Rao have used this method to grow crystals up to 30 mm in diameter and 2 mm thick.[23]

    The reaction can be slowed also by separating the two reagents with a permeable membrane. This approach, with a cellulose membrane, was used in September 1988 to study the growth of PbI
    2
    crystals in zero gravity, in an experiment flown on the Space Shuttle Discovery.[24]

    PbI
    2
    can also be crystallized from powder by sublimation at 390 °C, in near vacuum[25] or in a current of argon with some hydrogen.[26]

    Large high-purity crystals can be obtained by zone melting or by the Bridgman–Stockbarger technique.[18][25] These processes can remove various impurities from commercial PbI
    2
    .[27]

    Applications[edit]

    Lead iodide is a precursor material in the fabrication of highly efficient Perovskite solar cell. Typically, a solution of PbI
    2
    in an organic solvent, such as dimethylformamide or dimethylsulfoxide, is applied over a titanium dioxide layer by spin coating. The layer is then treated with a solution of methylammonium iodide CH
    3
    NH
    3
    I
    and annealed, turning it into the double salt methylammonium lead iodide CH
    3
    NH
    3
    PbI
    3
    , with a perovskite structure. The reaction changes the film's color from yellow to light brown.[12]

    PbI
    2
    is also used as a high-energy photon detector for gamma-rays and X-rays, due to its wide band gap which ensures low noise operation.[4][13][25]

    Lead iodide was formerly used as a paint pigment under the name "iodine yellow". It was described by Prosper Mérimée (1830) as "not yet much known in commerce, is as bright as orpimentorchromate of lead. It is thought to be more permanent; but time only can prove its pretension to so essential a quality. It is prepared by precipitating a solution of acetate or nitrate of lead, with potassium iodide: the nitrate produces a more brilliant yellow color."[16] However, due to the toxicity and instability of the compound it is no longer used as such.[16] It may still be used in art for bronzing and in gold-like mosaic tiles.[4]

    Stability[edit]

    Common material characterization techniques such as electron microscopy can damage samples of lead (II) iodide.[28] Thin films of lead (II) iodide are unstable in ambient air.[29] Ambient air oxygen oxidizes iodide into elemental iodine:

    2 PbI2 + O2 → 2 PbO + 2 I2

    Toxicity[edit]

    Lead iodide is very toxic to human health. Ingestion will cause many acute and chronic consequences characteristic of lead poisoning.[30] Lead iodide has been found to be a carcinogen in animals suggesting the same may hold true in humans.[31] Lead iodide is an inhalation hazard, and appropriate respirators should be used when handling powders of lead iodide.

    Structure[edit]

    The structure of PbI
    2
    , as determined by X-ray powder diffraction, is primarily hexagonal close-packed system with alternating between layers of lead atoms and iodide atoms, with largely ionic bonding. Weak van der Waals interactions have been observed between lead–iodide layers.[13] The most common stacking forms are 2H and 4H. The 4H polymorph is most common in samples grown from the melt, by precipitation, or by sublimation, whereas the 2H polymorph is usually formed by sol-gel synthesis.[9] The solid can also take an R6 rhombohedral structure.[32]

  • Experiment "golden rain" where iodide of lead(II) was recrystallized from hot solution by cooling, forming crystals of golden-yellow
    Experiment "golden rain" where iodide of lead(II) was recrystallized from hot solution by cooling, forming crystals of golden-yellow
  • See also[edit]

  • Lead(II) chloride
  • Tin(II) iodide
  • Bridgman–Stockbarger technique
  • References[edit]

    1. ^ a b c d e Haynes (2016), p. 4.69.
  • ^ Clever, H. L.; Johnston, F. J. (1980). "The Solubility of Some Sparingly Soluble Lead Salts: An Evaluation of the Solubility in Water and Aqueous Electrolyte Solution" (PDF). J. Phys. Chem. Ref. Data (NIST data review). 9 (3): 751–784. Bibcode:1980JPCRD...9..751C. doi:10.1063/1.555628. Archived from the original (PDF) on 2014-02-11. Retrieved 2017-07-13.
  • ^ Haynes (2016), p. 5.171.
  • ^ a b c d Patnaik, P. (2002). Handbook of Inorganic Chemicals. McGraw-Hill. ISBN 978-0070494398.
  • ^ West, Philip W.; Carlton, Jack K. (1952). "The extraction of lead iodide by methyl iso-propyl ketone". Analytica Chimica Acta. 6: 406–411. doi:10.1016/S0003-2670(00)86967-6.
  • ^ Ahuja, R.; Arwin, H.; Ferreira Da Silva, A.; Persson, C.; Osorio-Guillén, J. M.; Souza De Almeida, J.; Moyses Araujo, C.; Veje, E.; Veissid, N.; An, C. Y.; Pepe, I.; Johansson, B. (2002). "Electronic and optical properties of lead iodide". Journal of Applied Physics. 92 (12): 7219–7224. Bibcode:2002JAP....92.7219A. doi:10.1063/1.1523145. hdl:10495/11556. S2CID 29398039.
  • ^ Zhong, Mianzeng; Zhang, Shuai; Huang, Le; You, Jingbi; Wei, Zhongming; Liu, Xinfeng; Li, Jingbo (2017). "Large-scale 2D PbI2 monolayers: experimental realization and their indirect band-gap related properties". Nanoscale. 9 (11): 3736–3741. doi:10.1039/c6nr07924e. PMID 28102404.
  • ^ Haynes (2016), p. 4.128.
  • ^ a b Brixner, L.H.; Chen, H.-Y.; Foris, C.M. (1981). "X-ray study of the PbCl2−xIx and PbBr2−xIx systems". Journal of Solid State Chemistry. 40 (3): 336–343. Bibcode:1981JSSCh..40..336B. doi:10.1016/0022-4596(81)90400-X.
  • ^ Haynes (2016), p. 5.24.
  • ^ "Sigma-Aldrich catalog: Lead(II) iodide 99%". www.sigmaaldrich.com. Retrieved 2016-04-29.
  • ^ a b c Dhiaputra, I.; Permana, B.; Maulana, Y.; Dwi Inayatie, Y.; Purba, Y. R.; Bahtiar, A. (2016). Composition and crystal structure of perovskite films attained from electrodes of used car battery. The 2nd Padjadjaran International Physics Symposium 2015 (PIPS-2015). Vol. 1712. Jatinangor, Indonesia. doi:10.1063/1.4941896.
  • ^ a b c Shah, K. S.; Olschner, F.; Moy, L. P.; Bennett, P.; Misra, M.; Zhang, J.; Squillante, M. R.; Lund, J. C. (1996). "Lead iodide x-ray detection systems". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Proceedings of the 9th International Workshop on Room Temperature Semiconductor X- and γ-Ray Detectors, Associated Electronics and Applications. 380 (1–2): 266–270. Bibcode:1996NIMPA.380..266S. doi:10.1016/S0168-9002(96)00346-4.
  • ^ Anthony, Seth (2014). I. Cognitive and instructional factors relating to students' development of personal models of chemical systems in the general chemistry laboratory. [...] (Thesis). Colorado State University. hdl:10217/82503.
  • ^ US 3764368, Jacobs, J. & Corrigan, R., "Lead iodide film", published 9 October 1973 
  • ^ a b c Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. (2004). The Pigment Compendium: a Dictionary of Historical Pigments. Butterworth-Heinemann. ISBN 978-0750657495.
  • ^ Ahmad, S.; Prakash, G. V. (2012). "Fabrication of excitonic luminescent inorganic‑organic hybrid nano and microcrystals". International Conference on Fibre Optics and Photonics. OSA: MPo.40. doi:10.1364/photonics.2012.mpo.40.
  • ^ a b Matuchova, M.; Zdansky, K.; Zavadil, J.; Danilewsky, A.; Riesz, F.; Hassan, M.A.S.; Alexiew, D.; Kral, R. (2009). "Study of the influence of the rare-earth elements on the properties of lead iodide". Journal of Crystal Growth. 311 (14): 3557–3562. Bibcode:2009JCrGr.311.3557M. doi:10.1016/j.jcrysgro.2009.04.043.
  • ^ Chaudhuri, T.K.; Acharya, H.N. (1982). "Preparation of lead iodide films by iodination of chemically deposited lead sulphide films". Materials Research Bulletin. 17 (3): 279–286. doi:10.1016/0025-5408(82)90074-5.
  • ^ Fleming, Declan (6 January 2015). "Golden rain". Education in Chemistry. 52 (1): 10.
  • ^ Zhu, Xinghua; Wangyang, Peihua; Sun, Hui; Yang, Dingyu; Gao, Xiuying; Tian, Haibo (2016). "Facile growth and characterization of freestanding single crystal PbI2 film". Materials Letters. 180: 59–62. doi:10.1016/j.matlet.2016.05.101.
  • ^ Fernelius, W. Conard; Detling, Kenneth D. (1934). "Preparation of crystals of sparingly soluble salts". Journal of Chemical Education. 11 (3): 176. Bibcode:1934JChEd..11..176F. doi:10.1021/ed011p176..
  • ^ Patel, A.R.; Rao, A. Venkateswara (1980). "An improved design to grow larger and more perfect single crystals in gels". Journal of Crystal Growth. 49 (3): 589–590. Bibcode:1980JCrGr..49..589P. doi:10.1016/0022-0248(80)90134-7.
  • ^ Scaife, C. W. J.; Cavoli, S. R.; Blanton, T. N.; Morse, M. D.; Sever, B. R.; Willis, W. S.; Suib, S. L. (1990). "Synthesis and characterization of lead(II) iodide grown in space". Chemistry of Materials. 2 (6): 777–780. doi:10.1021/cm00012a034.
  • ^ a b c Fornaro, L.; Saucedo, E.; Mussio, L.; Yerman, L.; Ma, X.; Burger, A. (2001). "Lead iodide film deposition and characterization". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 458 (1–2): 406–412. Bibcode:2001NIMPA.458..406F. doi:10.1016/S0168-9002(00)00933-5.
  • ^ Liu, X.; Ha, S. T.; Zhang, Qing; de la Mata, M.; Magen, C.; Arbiol, J.; Sum, T. C.; Xiong, Q. (2015). "Whispering Gallery Mode Lasing from Hexagonal Shaped Layered Lead Iodide Crystals". ACS Nano. 9 (1): 687–695. doi:10.1021/nn5061207. hdl:10220/38493. PMID 25562110.
  • ^ Tonn, J.; Matuchova, M.; Danilewsky, A. N.; Cröll, A. (2015). "Removal of oxidic impurities for the growth of high purity lead iodide single crystals". Journal of Crystal Growth. 416: 82–89. Bibcode:2015JCrGr.416...82T. doi:10.1016/j.jcrysgro.2015.01.024.
  • ^ Forty, A. J. (August 1960). "Observations of the decomposition of crystals of lead iodide in the electron microscope". Philosophical Magazine. 5 (56): 787–797. Bibcode:1960PMag....5..787F. doi:10.1080/14786436008241217.
  • ^ Popov, Georgi; Mattinen, Miika; Hatanpää, Timo; Vehkamäki, Marko; Kemell, Marianna; Mizohata, Kenichiro; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku (2019-02-12). "Atomic Layer Deposition of PbI2 Thin Films". Chemistry of Materials. 31 (3): 1101–1109. doi:10.1021/acs.chemmater.8b04969.
  • ^ Flora, G.; Gupta, D.; Tiwari, A. (2012). "Toxicity of lead: a review with recent updates". Interdisciplinary Toxicology. 5 (2): 47–58. doi:10.2478/v10102-012-0009-2. PMC 3485653. PMID 23118587.
  • ^ "Haz-Map Category Details". hazmap.nlm.nih.gov. Retrieved 2016-04-29.
  • ^ Sears, W. M.; Klein, M. L.; Morrison, J. A. (1979). "Polytypism and the vibrational properties of I2". Physical Review B. 19 (4): 2305–2313. Bibcode:1979PhRvB..19.2305S. doi:10.1103/PhysRevB.19.2305. hdl:11375/12129.
  • Cited sources[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Lead(II)_iodide&oldid=1209322793"

    Categories: 
    Iodides
    Lead(II) compounds
    Metal halides
    Semiconductor materials
    Hidden categories: 
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
    Commons category link is on Wikidata
     



    This page was last edited on 21 February 2024, at 09:46 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki