Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Examples  





3 Calculation  



3.1  Linear transformations of random variables  





3.2  Linear combination of independent random variables  





3.3  Vector-valued random variables  







4 Important properties  



4.1  Calculations of moments  







5 Other properties  





6 Relation to other functions  





7 See also  





8 References  



8.1  Citations  





8.2  Sources  
















Moment-generating function






Català
Čeština
Deutsch
Español
Euskara
فارسی
Français

Italiano
עברית
Latina
Magyar
Nederlands

Polski
Русский
Slovenčina
Slovenščina
Sunda
Suomi
Svenska
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Moment generating function)

Inprobability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functionsorcumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions.

As its name implies, the moment-generating function can be used to compute a distribution’s moments: the nth moment about 0 is the nth derivative of the moment-generating function, evaluated at 0.

In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random variables, and can even be extended to more general cases.

The moment-generating function of a real-valued distribution does not always exist, unlike the characteristic function. There are relations between the behavior of the moment-generating function of a distribution and properties of the distribution, such as the existence of moments.

Definition

[edit]

Let be a random variable with CDF . The moment generating function (mgf) of (or), denoted by , is

provided this expectation exists for in some open neighborhood of 0. That is, there is an such that for all in, exists. If the expectation does not exist in an open neighborhood of 0, we say that the moment generating function does not exist.[1]

In other words, the moment-generating function of X is the expectation of the random variable . More generally, when , an -dimensional random vector, and is a fixed vector, one uses instead of :

always exists and is equal to 1. However, a key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, the characteristic function or Fourier transform always exists (because it is the integral of a bounded function on a space of finite measure), and for some purposes may be used instead.

The moment-generating function is so named because it can be used to find the moments of the distribution.[2] The series expansion of is

Hence

where is the thmoment. Differentiating times with respect to and setting , we obtain the th moment about the origin, ; see Calculations of moments below.

If is a continuous random variable, the following relation between its moment-generating function and the two-sided Laplace transform of its probability density function holds:

since the PDF's two-sided Laplace transform is given as

and the moment-generating function's definition expands (by the law of the unconscious statistician) to

This is consistent with the characteristic function of being a Wick rotationof when the moment generating function exists, as the characteristic function of a continuous random variable is the Fourier transform of its probability density function , and in general when a function is of exponential order, the Fourier transform of is a Wick rotation of its two-sided Laplace transform in the region of convergence. See the relation of the Fourier and Laplace transforms for further information.

Examples

[edit]

Here are some examples of the moment-generating function and the characteristic function for comparison. It can be seen that the characteristic function is a Wick rotation of the moment-generating function when the latter exists.

Distribution Moment-generating function Characteristic function
Degenerate
Bernoulli
Geometric
Binomial
Negative binomial
Poisson
Uniform (continuous)
Uniform (discrete)
Laplace
Normal
Chi-squared
Noncentral chi-squared
Gamma
Exponential
Beta (see Confluent hypergeometric function)
Multivariate normal
Cauchy Does not exist
Multivariate Cauchy

[3]

Does not exist

Calculation

[edit]

The moment-generating function is the expectation of a function of the random variable, it can be written as:

Note that for the case where has a continuous probability density function , is the two-sided Laplace transformof.

where is the thmoment.

Linear transformations of random variables

[edit]

If random variable has moment generating function , then has moment generating function

Linear combination of independent random variables

[edit]

If, where the Xi are independent random variables and the ai are constants, then the probability density function for Sn is the convolution of the probability density functions of each of the Xi, and the moment-generating function for Sn is given by

Vector-valued random variables

[edit]

For vector-valued random variables with real components, the moment-generating function is given by

where is a vector and is the dot product.

Important properties

[edit]

Moment generating functions are positive and log-convex,[citation needed] with M(0) = 1.

An important property of the moment-generating function is that it uniquely determines the distribution. In other words, if and are two random variables and for all values of t,

then

for all values of x (or equivalently X and Y have the same distribution). This statement is not equivalent to the statement "if two distributions have the same moments, then they are identical at all points." This is because in some cases, the moments exist and yet the moment-generating function does not, because the limit

may not exist. The log-normal distribution is an example of when this occurs.

Calculations of moments

[edit]

The moment-generating function is so called because if it exists on an open interval around t = 0, then it is the exponential generating function of the moments of the probability distribution:

That is, with n being a nonnegative integer, the nth moment about 0 is the nth derivative of the moment generating function, evaluated at t = 0.

Other properties

[edit]

Jensen's inequality provides a simple lower bound on the moment-generating function:

where is the mean of X.

The moment-generating function can be used in conjunction with Markov's inequality to bound the upper tail of a real random variable X. This statement is also called the Chernoff bound. Since is monotonically increasing for , we have

for any and any a, provided exists. For example, when X is a standard normal distribution and , we can choose and recall that . This gives , which is within a factor of 1+a of the exact value.

Various lemmas, such as Hoeffding's lemmaorBennett's inequality provide bounds on the moment-generating function in the case of a zero-mean, bounded random variable.

When is non-negative, the moment generating function gives a simple, useful bound on the moments:

For any and .

This follows from the inequality into which we can substitute implies for any . Now, if and , this can be rearranged to . Taking the expectation on both sides gives the bound on in terms of .

As an example, consider with degrees of freedom. Then from the examples . Picking and substituting into the bound:

We know that in this case the correct bound is . To compare the bounds, we can consider the asymptotics for large . Here the moment-generating function bound is , where the real bound is . The moment-generating function bound is thus very strong in this case.

Relation to other functions

[edit]

Related to the moment-generating function are a number of other transforms that are common in probability theory:

Characteristic function
The characteristic function is related to the moment-generating function via the characteristic function is the moment-generating function of iX or the moment generating function of X evaluated on the imaginary axis. This function can also be viewed as the Fourier transform of the probability density function, which can therefore be deduced from it by inverse Fourier transform.
Cumulant-generating function
The cumulant-generating function is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of the characteristic function, while others call this latter the second cumulant-generating function.
Probability-generating function
The probability-generating function is defined as This immediately implies that

See also

[edit]

References

[edit]

Citations

[edit]
  1. ^ Casella, George; Berger, Roger L. (1990). Statistical Inference. Wadsworth & Brooks/Cole. p. 61. ISBN 0-534-11958-1.
  • ^ Bulmer, M. G. (1979). Principles of Statistics. Dover. pp. 75–79. ISBN 0-486-63760-3.
  • ^ Kotz et al.[full citation needed] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution
  • Sources

    [edit]
    • Casella, George; Berger, Roger (2002). Statistical Inference (2nd ed.). pp. 59–68. ISBN 978-0-534-24312-8.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Moment-generating_function&oldid=1227599973"

    Categories: 
    Moment (mathematics)
    Generating functions
    Hidden categories: 
    All articles with incomplete citations
    Articles with incomplete citations from December 2019
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from June 2023
    Articles lacking in-text citations from February 2010
    All articles lacking in-text citations
     



    This page was last edited on 6 June 2024, at 18:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki