Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 History  





3 Applications  



3.1  Thermodynamics  





3.2  Medicine  







4 See also  





5 References  





6 Bibliography  





7 External links  














Pressurevolume diagram






العربية

Bosanski
Čeština
Dansk
Deutsch
Español
فارسی
Français

Italiano
Português
Slovenčina
کوردی
Svenska
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Apressure–volume diagram (orPV diagram, or volume–pressure loop)[1] is used to describe corresponding changes in volume and pressure in a system. They are commonly used in thermodynamics, cardiovascular physiology, and respiratory physiology.

PV diagrams, originally called indicator diagrams, were developed in the 18th century as tools for understanding the efficiency of steam engines.

Description[edit]

A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.[citation needed]

The figure shows the features of an idealized PV diagram. It shows a series of numbered states (1 through 4). The path between each state consists of some process (A through D) which alters the pressure or volume of the system (or both).

Generalized PV diagram
Generalized PV diagram

A key feature of the diagram is that the amount of energy expended or received by the system as work can be measured because the net work is represented by the area enclosed by the four lines. In the figure, the processes 1-2-3 produce a work output, but processes from 3-4-1 require a smaller energy input to return to the starting position / state; so the net work is the difference between the two. This figure is highly idealized, in so far as all the lines are straight and the corners are right angles. A diagram showing the changes in pressure and volume in a real device will show a more complex shape enclosing the work cycle. [citation needed] (§ Applications).

History[edit]

Watt's indicator diagram

The PV diagram, then called an indicator diagram, was developed in 1796 by James Watt and his employee John Southern.[2] Volume was traced by a plate moving with the piston, while pressure was traced by a pressure gauge whose indicator moved at right angles to the piston. A pencil was used to draw the diagram.[citation needed] Watt used the diagram to make radical improvements to steam engine performance.

Applications[edit]

Thermodynamics[edit]

Indicator diagram for steam locomotive
Indicator diagram for steam locomotive

[3] Specifically, the diagram records the pressure of steam versus the volume of steam in a cylinder, throughout a piston's cycle of motion in a steam engine. The diagram enables calculation of the work performed and thus can provide a measure of the power produced by the engine.[4]

To exactly calculate the work done by the system it is necessary to calculate the integral of the pressure with respect to volume. One can often quickly calculate this using the PV diagram as it is simply the area enclosed by the cycle.[citation needed]

Note that in some cases specific volume will be plotted on the x-axis instead of volume, in which case the area under the curve represents work per unit mass of the working fluid (i.e. J/kg).[citation needed]

Medicine[edit]

Incardiovascular physiology, the diagram is often applied to the left ventricle, and it can be mapped to specific events of the cardiac cycle. PV loop studies are widely used in basic research and preclinical testing, to characterize the intact heart's performance under various situations (effect of drugs, disease, characterization of mouse strains)[citation needed]

The sequence of events occurring in every heart cycle is as follows. The left figure shows a PV loop from a real experiment; letters refer to points.

As it can be seen, the PV loop forms a roughly rectangular shape and each loop is formed in an anti-clockwise direction.

Very useful information can be derived by examination and analysis of individual loops or series of loops, for example:

See external links for a much more precise representation.

See also[edit]

References[edit]

  1. ^ Nosek, Thomas M. "Section 3/3ch5/s3ch5_16". Essentials of Human Physiology. Archived from the original on 2016-03-24.
  • ^ Bruce J. Hunt (2010) Pursuing Power and Light, page 13, The Johns Hopkins University Press ISBN 0-8018-9359-3
  • ^ Walter, John (2008). "The Engine Indicator" (PDF). pp. xxv–xxvi. Archived from the original (PDF) on 2012-03-10.
  • ^ Richard L. Hills and A. J. Pacey (January 1972) "The measurement of power in early steam-driven textile mills," Technology and Culture, vol. 13, no. 1, pages 25–43.
  • ^ "Diagram at uc.edu". Archived from the original on 2008-06-22. Retrieved 2006-12-12.
  • ^ Systolic dysfunction
  • Bibliography[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pressure–volume_diagram&oldid=1232491745"

    Categories: 
    Thermodynamics
    Cardiovascular physiology
    Diagrams
    Energy conversion
    Piston engines
    Steam power
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2021
    Commons category link is on Wikidata
     



    This page was last edited on 4 July 2024, at 00:37 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki