Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Overview  



2.1  Notation and terminology of group representations  





2.2  Reducible and irreducible representations  





2.3  Decomposable and indecomposable representations  





2.4  Connection between irreducible representation and indecomposable representation  







3 Examples of irreducible representations  



3.1  Trivial representation  





3.2  One-dimensional representation  





3.3  Irreducible complex representations  





3.4  Example of an irreducible representation over Fp







4 Applications in theoretical physics and chemistry  





5 Lie groups  



5.1  Lorentz group  







6 See also  



6.1  Associative algebras  





6.2  Lie groups  







7 References  



7.1  Books  





7.2  Articles  







8 Further reading  





9 External links  














Irreducible representation






العربية
Català
Français

Italiano

Русский
Српски / srpski

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Reducible representation)

Inmathematics, specifically in the representation theoryofgroups and algebras, an irreducible representation orirrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the actionof.

Every finite-dimensional unitary representation on a Hilbert space is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible.

History[edit]

Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field of arbitrary characteristic, rather than a vector space over the field of real numbers or over the field of complex numbers. The structure analogous to an irreducible representation in the resulting theory is a simple module.[citation needed]

Overview[edit]

Let be a representation i.e. a homomorphism of a group where is a vector space over a field . If we pick a basis for , can be thought of as a function (a homomorphism) from a group into a set of invertible matrices and in this context is called a matrix representation. However, it simplifies things greatly if we think of the space without a basis.

Alinear subspace is called -invariantif for all and all . The co-restriction of to the general linear group of a -invariant subspace is known as a subrepresentation. A representation is said to be irreducible if it has only trivial subrepresentations (all representations can form a subrepresentation with the trivial -invariant subspaces, e.g. the whole vector space , and {0}). If there is a proper nontrivial invariant subspace, is said to be reducible.

Notation and terminology of group representations[edit]

Group elements can be represented by matrices, although the term "represented" has a specific and precise meaning in this context. A representation of a group is a mapping from the group elements to the general linear group of matrices. As notation, let a, b, c, ... denote elements of a group G with group product signified without any symbol, so ab is the group product of a and b and is also an element of G, and let representations be indicated by D. The representation of a is written as

By definition of group representations, the representation of a group product is translated into matrix multiplication of the representations:

Ife is the identity element of the group (so that ae = ea = a, etc.), then D(e) is an identity matrix, or identically a block matrix of identity matrices, since we must have

and similarly for all other group elements. The last two statements correspond to the requirement that D is a group homomorphism.

Reducible and irreducible representations[edit]

A representation is reducible if it contains a nontrivial G-invariant subspace, that is to say, all the matrices can be put in upper triangular block form by the same invertible matrix . In other words, if there is a similarity transformation:

which maps every matrix in the representation into the same pattern upper triangular blocks. Every ordered sequence minor block is a group subrepresentation. That is to say, if the representation is, for example, of dimension 2, then we have:

where is a nontrivial subrepresentation. If we are able to find a matrix that makes as well, then is not only reducible but also decomposable.

Notice: Even if a representation is reducible, its matrix representation may still not be the upper triangular block form. It will only have this form if we choose a suitable basis, which can be obtained by applying the matrix above to the standard basis.

Decomposable and indecomposable representations[edit]

A representation is decomposable if all the matrices can be put in block-diagonal form by the same invertible matrix . In other words, if there is a similarity transformation:[1]

which diagonalizes every matrix in the representation into the same pattern of diagonal blocks. Each such block is then a group subrepresentation independent from the others. The representations D(a) and D(a) are said to be equivalent representations.[2] The (k-dimensional, say) representation can be decomposed into a direct sum of k >1 matrices:

soD(a)isdecomposable, and it is customary to label the decomposed matrices by a superscript in brackets, as in D(n)(a) for n = 1, 2, ..., k, although some authors just write the numerical label without parentheses.

The dimension of D(a) is the sum of the dimensions of the blocks:

If this is not possible, i.e. k = 1, then the representation is indecomposable.[1][3]

Notice: Even if a representation is decomposable, its matrix representation may not be the diagonal block form. It will only have this form if we choose a suitable basis, which can be obtained by applying the matrix above to the standard basis.

Connection between irreducible representation and indecomposable representation[edit]

An irreducible representation is by nature an indecomposable one. However, the converse may fail.

But under some conditions, we do have an indecomposable representation being an irreducible representation.

Examples of irreducible representations[edit]

Trivial representation[edit]

All groups have a one-dimensional, irreducible trivial representation by mapping all group elements to the identity transformation.

One-dimensional representation[edit]

Any one-dimensional representation is irreducible since it has no proper nontrivial subspaces.

Irreducible complex representations[edit]

The irreducible complex representations of a finite group G can be characterized using results from character theory. In particular, all complex representations decompose as a direct sum of irreps, and the number of irreps of is equal to the number of conjugacy classes of .[5]

Example of an irreducible representation over Fp[edit]

Applications in theoretical physics and chemistry[edit]

Inquantum physics and quantum chemistry, each set of degenerate eigenstates of the Hamiltonian operator comprises a vector space V for a representation of the symmetry group of the Hamiltonian, a "multiplet", best studied through reduction to its irreducible parts. Identifying the irreducible representations therefore allows one to label the states, predict how they will split under perturbations; or transition to other states in V. Thus, in quantum mechanics, irreducible representations of the symmetry group of the system partially or completely label the energy levels of the system, allowing the selection rules to be determined.[6]

Lie groups[edit]

Lorentz group[edit]

The irreps of D(K) and D(J), where J is the generator of rotations and K the generator of boosts, can be used to build to spin representations of the Lorentz group, because they are related to the spin matrices of quantum mechanics. This allows them to derive relativistic wave equations.[7]

See also[edit]

Associative algebras[edit]

Lie groups[edit]

References[edit]

  1. ^ a b E. P. Wigner (1959). Group theory and its application to the quantum mechanics of atomic spectra. Pure and applied physics. Academic press. p. 73.
  • ^ W. K. Tung (1985). Group Theory in Physics. World Scientific. p. 32. ISBN 978-997-1966-560.
  • ^ W. K. Tung (1985). Group Theory in Physics. World Scientific. p. 33. ISBN 978-997-1966-560.
  • ^ Artin, Michael (2011). Algebra (2nd ed.). Pearson. p. 295. ISBN 978-0132413770.
  • ^ a b Serre, Jean-Pierre (1977). Linear Representations of Finite Groups. Springer-Verlag. ISBN 978-0-387-90190-9.
  • ^ Levine, Ira N. (1991). "15". Quantum Chemistry (4th ed.). Prentice-Hall. p. 457. ISBN 0-205-12770-3. Each possible set of symmetry eigenvalues ... is called a symmetry species (or symmetry type). The group theory term is irreducible representation.
  • ^ T. Jaroszewicz; P. S. Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
  • Books[edit]

    Articles[edit]

    Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Irreducible_representation&oldid=1227186926"

    Categories: 
    Group theory
    Representation theory
    Theoretical physics
    Theoretical chemistry
    Symmetry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use American English from January 2019
    All Wikipedia articles written in American English
    All articles with unsourced statements
    Articles with unsourced statements from July 2013
     



    This page was last edited on 4 June 2024, at 07:35 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki