Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Formulation  





2 Corollaries  





3 Notes  














RiemannRoch theorem for smooth manifolds







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a Riemann–Roch theorem for smooth manifolds is a version of results such as the Hirzebruch–Riemann–Roch theoremorGrothendieck–Riemann–Roch theorem (GRR) without a hypothesis making the smooth manifolds involved carry a complex structure. Results of this kind were obtained by Michael Atiyah and Friedrich Hirzebruch in 1959, reducing the requirements to something like a spin structure.

Formulation

[edit]

Let X and Y be oriented smooth closed manifolds, and f: XY a continuous map. Let vf=f*(TY) − TX in the K-group K(X). If dim(X) ≡ dim(Y) mod 2, then

where ch is the Chern character, d(vf) an element of the integral cohomology group H2(Y, Z) satisfying d(vf) ≡ f* w2(TY)-w2(TX) mod 2, fK* the Gysin homomorphism for K-theory, and fH* the Gysin homomorphism for cohomology .[1] This theorem was first proven by Atiyah and Hirzebruch.[2]

The theorem is proven by considering several special cases.[3]IfY is the Thom space of a vector bundle V over X, then the Gysin maps are just the Thom isomorphism. Then, using the splitting principle, it suffices to check the theorem via explicit computation for line bundles.

Iff: XY is an embedding, then the Thom space of the normal bundle of XinY can be viewed as a tubular neighborhood of XinY, and excision gives a map

and

.

The Gysin map for K-theory/cohomology is defined to be the composition of the Thom isomorphism with these maps. Since the theorem holds for the map from X to the Thom space of N, and since the Chern character commutes with u and v, the theorem is also true for embeddings. f: XY.

Finally, we can factor a general map f: XY into an embedding

and the projection

The theorem is true for the embedding. The Gysin map for the projection is the Bott-periodicity isomorphism, which commutes with the Chern character, so the theorem holds in this general case also.

Corollaries

[edit]

Atiyah and Hirzebruch then specialised and refined in the case X = a point, where the condition becomes the existence of a spin structure on Y. Corollaries are on Pontryagin classes and the J-homomorphism.

Notes

[edit]
  1. ^ M. Karoubi, K-theory, an introduction, Springer-Verlag, Berlin (1978)
  • ^ M. Atiyah and F. Hirzebruch, Riemann–Roch theorems for differentiable manifolds (Bull. Amer. Math. Soc. 65 (1959) 276–281)
  • ^ M. Karoubi, K-theory, an introduction, Springer-Verlag, Berlin (1978)

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Riemann–Roch_theorem_for_smooth_manifolds&oldid=1014610418"

    Categories: 
    Theorems in differential geometry
    Algebraic surfaces
    Bernhard Riemann
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 28 March 2021, at 02:48 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki