Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Riemann's integral formula  





2 References  





3 External links  














RiemannSiegel formula






Español
Français
Nederlands

Português

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.

IfM and N are non-negative integers, then the zeta function is equal to

where

is the factor appearing in the functional equation ζ(s) = γ(1 − s) ζ(1 − s), and

is a contour integral whose contour starts and ends at +∞ and circles the singularities of absolute value at most 2πM. The approximate functional equation gives an estimate for the size of the error term. Siegel (1932)[1] and Edwards (1974) derive the Riemann–Siegel formula from this by applying the method of steepest descent to this integral to give an asymptotic expansion for the error term R(s) as a series of negative powers of Im(s). In applications s is usually on the critical line, and the positive integers M and N are chosen to be about (2πIm(s))1/2. Gabcke (1979) found good bounds for the error of the Riemann–Siegel formula.

Riemann's integral formula[edit]

Riemann showed that

where the contour of integration is a line of slope −1 passing between 0 and 1 (Edwards 1974, 7.9).

He used this to give the following integral formula for the zeta function:

References[edit]

  1. ^ Barkan, Eric; Sklar, David (2018). "On Riemanns Nachlass for Analytic Number Theory: A translation of Siegel's Uber". arXiv:1810.05198 [math.HO].

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Riemann–Siegel_formula&oldid=1197485797"

Categories: 
Zeta and L-functions
Theorems in analytic number theory
Bernhard Riemann
Hidden category: 
CS1 German-language sources (de)
 



This page was last edited on 20 January 2024, at 18:31 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki