Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Exact solvers  





3 Approximate solvers  



3.1  Roe solver  





3.2  HLLE solver  





3.3  HLLC solver  





3.4  Rotated-hybrid Riemann solvers  





3.5  Other solvers  







4 Notes  





5 See also  





6 References  





7 External links  














Riemann solver







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


ARiemann solver is a numerical method used to solve a Riemann problem. They are heavily used in computational fluid dynamics and computational magnetohydrodynamics.

Definition

[edit]

Generally speaking, Riemann solvers are specific methods for computing the numerical flux across a discontinuity in the Riemann problem.[1] They form an important part of high-resolution schemes; typically the right and left states for the Riemann problem are calculated using some form of nonlinear reconstruction, such as a flux limiter or a WENO method, and then used as the input for the Riemann solver.[2]

Exact solvers

[edit]

Sergei K. Godunov is credited with introducing the first exact Riemann solver for the Euler equations,[3] by extending the previous CIR (Courant-Isaacson-Rees) method to non-linear systems of hyperbolic conservation laws. Modern solvers are able to simulate relativistic effects and magnetic fields.

More recent research shows that an exact series solution to the Riemann problem exists, which may converge fast enough in some cases to avoid the iterative methods required in Godunov's scheme.[4]

Approximate solvers

[edit]

As iterative solutions are too costly, especially in magnetohydrodynamics, some approximations have to be made. Some popular solvers are:

Roe solver

[edit]

Philip L. Roe used the linearisation of the Jacobian, which he then solves exactly.[5]

HLLE solver

[edit]

The HLLE solver (developed by Ami Harten, Peter Lax, Bram van Leer and Einfeldt) is an approximate solution to the Riemann problem, which is only based on the integral form of the conservation laws and the largest and smallest signal velocities at the interface.[6][7] The stability and robustness of the HLLE solver is closely related to the signal velocities and a single central average state, as proposed by Einfeldt in the original paper

HLLC solver

[edit]

The HLLC (Harten-Lax-van Leer-Contact) solver was introduced by Toro.[8] It restores the missing rarefaction wave by using an estimation technique, such as linearisation. More advanced techniques exist, like using the Roe average velocity for the middle wave speed. These schemes are quite robust and efficient but somewhat more diffusive.[9]

Rotated-hybrid Riemann solvers

[edit]

These solvers were introduced by Hiroaki Nishikawa and Kitamura,[10] in order to overcome the carbuncle problems of the Roe solver and the excessive diffusion of the HLLE solver at the same time. They developed robust and accurate Riemann solvers by combining the Roe solver and the HLLE/Rusanov solvers: they show that being applied in two orthogonal directions the two Riemann solvers can be combined into a single Roe-type solver (the Roe solver with modified wave speeds). In particular, the one derived from the Roe and HLLE solvers, called Rotated-RHLL solver, is extremely robust (carbuncle-free for all possible test cases on both structured and unstructured grids) and accurate (as accurate as the Roe solver for the boundary layer calculation).

Other solvers

[edit]

There are a variety of other solvers available, including more variants of the HLL scheme[11] and solvers based on flux-splitting via characteristic decomposition.[12]

Notes

[edit]
  1. ^ LeVeque, Randall J., 1955- (1992). Numerical methods for conservation laws (2nd ed.). Basel: Birkhäuser Verlag. ISBN 3-7643-2723-5. OCLC 25281500.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  • ^ Toro, E. F. (2006). Riemann solvers and numerical methods for fluid dynamics : a practical introduction (3rd [rev.] ed.). Berlin: Springer. ISBN 978-3-540-49834-6. OCLC 405546150.
  • ^ Godunov, S. K. (1959), "A difference scheme for numerical computation of discontinuous solution of hyperbolic equation", Mat. Sbornik, 47: 271–306
  • ^ Wu, Y.Y.; Cheung, K.F. (2008), "Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations", Int. J. Numer. Methods Fluids, 57 (11): 1649–1668, Bibcode:2008IJNMF..57.1649W, doi:10.1002/fld.1696, S2CID 122832179
  • ^ Roe, P. L. (1981), "Approximate Riemann solvers, parameter vectors and difference schemes", J. Comput. Phys., 43 (2): 357–372, Bibcode:1981JCoPh..43..357R, doi:10.1016/0021-9991(81)90128-5
  • ^ Harten, Amiram; Lax, Peter D.; Van Leer, Bram (1983). "On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws". SIAM Review. 25 (1): 35–61. doi:10.1137/1025002. ISSN 0036-1445. JSTOR 2030019.
  • ^ Einfeldt, B. (1988), "On Godunov-type methods for gas dynamics", SIAM J. Numer. Anal., 25 (2): 294–318, Bibcode:1988SJNA...25..294E, doi:10.1137/0725021
  • ^ Toro, E. F.; Spruce, M.; Speares, W. (1994), "Restoration of the contact surface in the HLL-Riemann solver", Shock Waves, 4 (1): 25–34, Bibcode:1994ShWav...4...25T, doi:10.1007/BF01414629, S2CID 119972653
  • ^ Quirk, J. J. (1994), "A contribution to the great Riemann solver debate", Int. J. Numer. Methods Fluids, 18 (6): 555–574, Bibcode:1994IJNMF..18..555Q, doi:10.1002/fld.1650180603, hdl:2060/19930015894.
  • ^ Nishikawa, H.; Kitamura, K. (2008), "Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers", J. Comput. Phys., 227 (4): 2560–2581, Bibcode:2008JCoPh.227.2560N, doi:10.1016/j.jcp.2007.11.003
  • ^ Miyoshi, Takahiro; Kusano, Kanya (September 2005). "A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics". Journal of Computational Physics. 208 (1): 315–344. Bibcode:2005JCoPh.208..315M. doi:10.1016/j.jcp.2005.02.017.
  • ^ Donat, R.; Font, J.A.; Ibáñez, J.Ma; Marquina, A. (October 1998). "A Flux-Split Algorithm Applied to Relativistic Flows". Journal of Computational Physics. 146 (1): 58–81. Bibcode:1998JCoPh.146...58D. doi:10.1006/jcph.1998.5955.
  • See also

    [edit]

    References

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Riemann_solver&oldid=1168735497"

    Categories: 
    Numerical analysis
    Computational fluid dynamics
    Conservation equations
    Bernhard Riemann
    Hidden categories: 
    CS1 maint: multiple names: authors list
    CS1 maint: numeric names: authors list
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 4 August 2023, at 17:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki