Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The Riemann problem in linearized gas dynamics  





2 References  





3 See also  














Riemann problem






Deutsch
Français
Italiano
Nederlands
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


ARiemann problem, named after Bernhard Riemann, is a specific initial value problem composed of a conservation equation together with piecewise constant initial data which has a single discontinuity in the domain of interest. The Riemann problem is very useful for the understanding of equations like Euler conservation equations because all properties, such as shocks and rarefaction waves, appear as characteristics in the solution. It also gives an exact solution to some complex nonlinear equations, such as the Euler equations.

Innumerical analysis, Riemann problems appear in a natural way in finite volume methods for the solution of conservation law equations due to the discreteness of the grid. For that it is widely used in computational fluid dynamics and in computational magnetohydrodynamics simulations. In these fields, Riemann problems are calculated using Riemann solvers.

The Riemann problem in linearized gas dynamics[edit]

As a simple example, we investigate the properties of the one-dimensional Riemann problem in gas dynamics (Toro, Eleuterio F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics, Pg 44, Example 2.5)

The initial conditions are given by

where x = 0 separates two different states, together with the linearised gas dynamic equations (see gas dynamics for derivation).

where we can assume without loss of generality . We can now rewrite the above equations in a conservative form:

:

where

and the index denotes the partial derivative with respect to the corresponding variable (i.e. x or t).

The eigenvalues of the system are the characteristics of the system . They give the propagation speed of the medium, including that of any discontinuity, which is the speed of sound here. The corresponding eigenvectors are

By decomposing the left state in terms of the eigenvectors, we get for some

Now we can solve for and :

Analogously

for

Using this, in the domain in between the two characteristics , we get the final constant solution:

and the (piecewise constant) solution in the entire domain :

Although this is a simple example, it still shows the basic properties. Most notably, the characteristics decompose the solution into three domains. The propagation speed of these two equations is equivalent to the propagation speed of sound.

The fastest characteristic defines the Courant–Friedrichs–Lewy (CFL) condition, which sets the restriction for the maximum time step for which an explicit numerical method is stable. Generally as more conservation equations are used, more characteristics are involved.

References[edit]

See also[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Riemann_problem&oldid=1182468643"

Categories: 
Conservation equations
Fluid dynamics
Computational fluid dynamics
Bernhard Riemann
 



This page was last edited on 29 October 2023, at 14:49 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki