Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Concept  





2 Terms  





3 Operative aspects  



3.1  Examination of death  





3.2  Examination of the living  







4 Technology  





5 Virtopsy objectives  



5.1  Success  







6 Advantages  





7 Disadvantages  





8 Best practice  





9 Virtopsy project leading house  





10 Institutes contributing to the Virtopsy project  





11 Institutes, districts or countries conducting post-mortem scanning  





12 Films  





13 Books and journals  





14 Virtopsies in popular culture  





15 References  





16 External links  














Virtopsy






العربية
Bosanski
Deutsch
Français

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Virtopsy is a virtual alternative to a traditional autopsy, conducted with scanning and imaging technology. The name is a portmanteau of "virtual" and "autopsy" and is a trademark registered to Richard Dirnhofer (de), the former head of the Institute of Forensic Medicine of the University of Bern, Switzerland.[1][2]

Some proponents of virtopsy propose to partially or completely replace traditional autopsy with this approach, including its creator.[3]

Dirnhofer has asserted that virtopsy fully satisfies the requirement that medical forensic findings provide “a complete and true picture of the object examined”.[4] Furthermore, virtopsy is said to achieve the objective “that the pathologist’s report should ‘photograph’ with words so that the reader is able to follow his thoughts visually”.[5]

Concept[edit]

Forensic pathology is a field within which physicians are mainly preoccupied with examining what initially are victims of possible, suspected or obvious violence that ultimately die. Clinical forensic medicine essentially does the same but with living victims; traffic medicine and age determination are applications that are not, strictly speaking, restricted to clinical forensic medicine in that general practitioners, pediatricians, and other specialists also provide services for such requests.

As examinations typically are performed under the legal and task restraints of investigative authorities such as courts, prosecutors, district attorneysorpolice, there are constraints as to cost, time, objectivity and task specification depending on local law.

The most relevant step is adequately documenting findings. Virtopsy employs imaging methods that are also used in clinical medicine such as computed tomography (CT), magnetic resonance imaging (MRI).[6] Also, 3D surface scanning typically used in automotive industry is being employed to integrate body surface documentation with 3D scene or tool scans. The choice of methods is further supplemented with 3D imaging-guided biopsy systems[7] and post mortem angiography.[8]

CT is well suited to show foreign objects, bone and air or gas distribution throughout the body, whereas MRI sequences are strong in detailing organ and soft tissue findings. A comprehensive analysis of both surface and deep tissue findings may require fusion of CT, MRI and 3D surface data.[9]

Resulting data can be archived and reproduced without loss,[10] analysed elsewhere, or distributed to specialists for technically demanding analysis.

Autopsy still produces both different and ancillary findings compared to virtopsy results so that currently, virtopsy is not a generally accepted method to entirely replace autopsies.[11] In fact, the first scientific study detailing the results of comparing postmortem CT scanning with conventional autopsies was conducted by a team from Israel and was published 1994.[12] Their conclusion already had been that single methods were not as useful to maximize on yielding as many findings as possible as the combination of scanning and autopsy were.

Terms[edit]

The term “Virtobot” is a trademark also registered to Prof. R. Dirnhofer. It describes a multi-functional robotic system.[7]

The Virtangio machine is a device that is trademarked to Prof. R. Dirnhofer [13] and manufactured by Fumedica [1].[14]

Usage of Greek words in the context of examining deaths may not withstand the test of falsification that spearheaded the virtopsy idea to begin with, but, in fact, usage of existing and creation of new neologisms may have to be reconsidered.[15]

Operative aspects[edit]

The Virtopsy project started as a research project that was initiated at the end of the twentieth century by Prof. Richard Dirnhofer, and now covers both applied methods and research. Virtopsy contains applied research into various methods of high-tech imaging with the goal to introduce them into the practice of forensic pathology.[6]

With Prof. Michael Thali as operative head of the group, the virtopsy research team operates out of the Institute of Forensic Medicine at the University of Zurich, Switzerland since early 2011.[16]

Examination of death[edit]

The idea to conduct virtual autopsy is not new. In 2003, the British Museum contacted the University of Bern's Institute of Forensic Medicine in Switzerland for their virtopsy to do autopsy on a 3000-year-old mummy named Nesperennub without compromising the body.[17] While manner of death,[6] cause of death,[6] time of death,[18][19] identification of deceased and a range of practical and reconstructive applications are obviously related to medicolegal investigation of death, virtopsy methods were ground breaking in that they have established a new high-tech toolbox into both research and practice morphological investigation aspects of modern forensic pathology.

Since virtopsy is non-invasive, it is less traumatic for surviving family members and may not violate religious taboos against violating bodily integrity.[20]

Examination of the living[edit]

Non-invasive imaging is also conducted in living or surviving subjects, but as that has been the main clinical application of CT and MR imaging to begin with, their use in medicolegal investigation of the living is not as ground breaking as using them for investigation of death. Nevertheless, a number of applications that may be regarded as specific for medicolegal imaging applications in the living have found attraction for virtopsy-derived methods:

Technology[edit]

The technology currently used for conducting a “virtual autopsy” comprises

Virtopsy objectives[edit]

The virtopsy idea was generated to yield results along a comprehensive number of performance indicators:

Success[edit]

Virtopsy methods have helped to solve a range of cases that would have been difficult or impossible to solve otherwise.[24] While academically, case-reports tend to be looked down on by medical faculty, they can expand the existing experience by significant contributions.

Advantages[edit]

This method offers the following advantages:

Disadvantages[edit]

Best practice[edit]

The National Research Council in the USA, as part of its proposals for reforms in the forensic sciences, has proposed virtopsy as “Best Practice” for the gathering of forensic evidence [www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf].

In addition, the International Society of Forensic Radiology and Imaging was founded in 2012 with the aim of enabling a continuous exchange of research results among its members and developing quality standards for the techniques employed [2].

A Technical Working Group Forensic Imaging Methods [3] was founded in 2005 by Michael Thali and Richard Dirnhofer. It aims to promote an increasingly internationally standardised approach.

Furthermore, a TTechnical Working Group Postmortem Angiography Methods was founded in 2012 to promote best practice. Under the direction of the University Hospital of Lausanne and comprising nine European institutes of forensic medicine, it is developing reliable, standardized methods and guidelines for conducting and assessing postmortem angiographic examinations [www.postmortem-angio.ch].

Virtopsy project leading house[edit]

Institutes contributing to the Virtopsy project[edit]

Institutes, districts or countries conducting post-mortem scanning[edit]

Films[edit]

Books and journals[edit]

Virtopsies in popular culture[edit]

References[edit]

  1. ^ "VIRTOPSY - wirtschaft.ch - trademarks - Universität Bern Institut für Rechtsmedizin (IRM) Prof. Dr. R. Dirnhofer, Direktor Bern - Trademark no. P-491277 - Application no. 04728/2001". wirtschaft.ch. Retrieved 2013-08-28.
  • ^ "Home". virtopsy.com.
  • ^ Richard Dirnhofer; Peter J. Schick; Gerhard Ranner (2010). Virtopsy - Obduktion neu in Bildern. Wien, Austria: Manzsche Verlags- und Universitaetsbuchhandlung. ISBN 978-3-214-10191-6.
  • ^ E. von Hofmann
  • ^ Schwarzacher
  • ^ a b c d e Thali MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C, Schroth G, Ith M, Sonnenschein M, Doernhoefer T, Scheurer E, Plattner T, Dirnhofer R (2003). "Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)--a feasibility study". J Forensic Sci. 48 (2): 386–403. doi:10.1520/JFS2002166. PMID 12665000.
  • ^ a b c d Ebert LC, Ptacek W, Naether S, Fürst M, Ross S, Buck U, Weber S, Thali M (2010). "Virtobot--a multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy". Int J Med Robot. 6 (1): 18–27. doi:10.1002/rcs.285. PMID 19806611. S2CID 41263796.
  • ^ a b Grabherr S, Djonov V, Friess A, Thali MJ, Ranner G, Vock P, Dirnhofer R (2006). "Postmortem angiography after vascular perfusion with diesel oil and a lipophilic contrast agent". American Journal of Roentgenology. 187 (5): W515-23. doi:10.2214/AJR.05.1394. PMID 17056884.
  • ^ Thali MJ, Braun M, Buck U, Aghayev E, Jackowski C, Vock P, Sonnenschein M, Dirnhofer R (2005). "Virtopsy--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning". J Forensic Sci. 50 (2): 428–42. doi:10.1520/JFS2004290. PMID 15813556.
  • ^ Aghayev E, Staub L, Dirnhofer R, Ambrose T, Jackowski C, Yen K, Bolliger S, Christe A, Roeder C, Aebi M, Thali MJ (2010). "Virtopsy - the concept of a centralized database in forensic medicine for analysis and comparison of radiological and autopsy data". J Forensic Leg Med. 15 (3): 135–40. doi:10.1016/j.jflm.2007.07.005. PMID 18313007.
  • ^ a b O'Donnell C, Woodford N (2008). "Post-mortem radiology--a new sub-speciality?". Clin Radiol. 63 (11): 1189–94. doi:10.1016/j.crad.2008.05.008. PMID 18929036.
  • ^ Donchin Y, Rivkind AI, Bar-Ziv J, Hiss J, Almog J, Drescher M (1994). "Utility of postmortem computed tomography in trauma victims". J Trauma. 37 (4): 552–5. doi:10.1097/00005373-199410000-00006. PMID 7932884.
  • ^ "Virtangio - wirtschaft.ch - trademarks - Forim-X AG c/o Prof. Dr. Richard Dirnhofer Bern - Trademark no. 602006 - Application no. 51685/2010". wirtschaft.ch. Retrieved 2013-08-28.
  • ^ "Folders - postmortem-angio". Postmortem-angio.ch. Retrieved 2013-08-28.
  • ^ Ampanozi G, Ruder TD, Thali MJ (2012). "Autopsy, necropsy, and necrotomy: if used, why not correctly?". Am J Forensic Med Pathol. 33 (2): e6. doi:10.1097/PAF.0b013e3182092bf9. PMID 21224734. S2CID 33631896.
  • ^ "Gestochen scharfe Diagnosen: Der neue Direktor des Instituts für Rechtsmedizin setzt auf digitale Technik als Ergänzung zum Skalpell - Übersicht Nachrichten". NZZ.ch. 28 August 2013. Retrieved 2013-08-28.
  • ^ "Bringing ideas to life: Making virtual autopsy a reality - The Edge Malaysia". Infovalley.net.my. 2010-06-07. Retrieved 2013-08-28.
  • ^ Ith, Michael and Bigler, Peter and Scheurer, Eva and Kreis, Roland and Hofmann, Lucie and Dirnhofer, Richard and Boesch, Chris (2002). "Observation and identification of metabolites emerging during postmortem decomposition of brain tissue by means of in situ 1H-magnetic resonance spectroscopy". Magnetic Resonance in Medicine. 48 (5): 915–920. doi:10.1002/mrm.10294. PMID 12418008. S2CID 7670211.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Scheurer E, Ith M, Dietrich D, Kreis R, Hüsler J, Dirnhofer R, Boesch C (2005). "Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ1H-MRS of the brain". Journal of Magnetic Resonance Imaging. 18 (3): 163–172. doi:10.1002/nbm.934. PMID 15578674. S2CID 36862603.
  • ^ "Digital autopsy: Replacing scalpels with scanners". Gizmag.com. 27 August 2013. Retrieved 2013-08-28.
  • ^ W. Brueschweiler and M. Braun and R. Dirnhofer and M.J. Thali (2003). "Analysis of patterned injuries and injury-causing instruments with forensic 3D/CAD supported photogrammetry (FPHG): an instruction manual for the documentation process". Forensic Science International. 132 (2): 130–138. doi:10.1016/s0379-0738(03)00006-9. PMID 12711193.
  • ^ Yen, Kathrin Thali, Michael J and Aghayev, Emin and Jackowski, Christian and Schweitzer, Wolf and Boesch, Chris and Vock, Peter and Dirnhofer, Richard and Sonnenschein, Martin (2012). "Strangulation signs: Initial correlation of MRI, MSCT, and forensic neck findings". Journal of Magnetic Resonance Imaging. 22 (4): 501–10. doi:10.1002/jmri.20396. PMID 16142698.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ Flach PM, Ross SG, Ampanozi G, Ebert L, Germerott T, Hatch GM, Thali MJ, Patak MA (2005). ""Drug mules" as a radiological challenge: sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox". Eur J Radiol. 81 (4): 501–510. doi:10.1016/j.ejrad.2011.11.025. PMID 22178312.
  • ^ Ruder TD, Germerott T, Thali MJ, Hatch GM (2011). "Differentiation of ante-mortem and post-mortem fractures with MRI: a case report". Br J Radiol. 84 (1000): e75-8. doi:10.1259/bjr/10214495. PMC 3473468. PMID 21415297.
  • ^ "Corpus Alienum captured in Post Mortem Computed Tomography, death due to an accidental ingestion of "Momos (Dumpling)"". sciencedirect. 2022-06-01. Retrieved 2022-11-11.
  • ^ Deepali Jena (Oct 17, 2022). "Virtual Autopsy | Giving dignity to the Dead". indiatoday.in. New Delhi: India Today. Retrieved 2023-04-02.
  • ^ N. Ohashi (1989). "Diagnosis of the causes on CPAOA cases: usefulness and problems of postmortem CT". KANTO J. Jpn. Assoc. Acute Med. (in Japanese). 10: 24–25.
  • ^ "Institute of Forensic Medicine". Sdu.dk. 2012-09-24. Retrieved 2013-08-28.
  • ^ "Visible Proofs: Forensic Views of the Body: Galleries: Media: Medical examiners at work". Nlm.nih.gov. 2010-12-14. Retrieved 2013-08-28.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Virtopsy&oldid=1213281796"

    Category: 
    X-ray computed tomography
    Hidden categories: 
    CS1 maint: multiple names: authors list
    CS1 Japanese-language sources (ja)
    Articles with a promotional tone from March 2014
    All articles with a promotional tone
     



    This page was last edited on 12 March 2024, at 02:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki