コンテンツにスキップ

アーケゾア

出典: フリー百科事典『ウィキペディア(Wikipedia)』
アーケゾア

微胞子虫胞子

分類
ドメイン : 真核生物 Eukaryota
上界 : アーケゾア上界 Archezoa
: アーケゾア界 Archezoa
学名
Archezoa
Haeckel1894 emend. Cavalier-Smith, 1983[1]

 (Archezoa) (arche-)(zoa)198320

[]



[]


(protoeukaryote)

2[2]

(一)

(二)

(2)212

(1)[2]2010[3][4][5][ 1]

[]


19834[1]1987[6]Metakaryota[7]Metakaryota1998[8]2003[9]

[]


[10][11]1987[7][ 2]1996[12]

[]


3[ 3]1989RNA[13]1991[14]21996[15][16]1995[17]1999[18][19]

[]


1993退[20]1997[21]1998[8]2002[22]

[]


1994[23]1998[8]2003[9]2002[24]2003[25]2018[26]Monocercomonoides exilis2016退[27]

注釈[編集]

  1. ^ この細菌Ca. Uab amorphumは真核生物の食作用関連遺伝子を持たないので、この「食作用」は収斂でありミトコンドリアの起源と直接の関係はない。
  2. ^ その後1998年に再びアーケゾアに含められたことがある[8]
  3. ^ さらにPhreatamoebidae科が知られていたが、これは後にマスチゴアメーバ科に組み入れられたのでここでは同一視する。

参考文献[編集]

  1. ^ a b Cavalier-Smith, T. (1983). “A six-kingdom classification and a unified phylogeny”. In Schenk & Schwemmler (eds.). Intracellular space as oligogenetic ecosystem. Endocytobiology. 2. de Gruyter. pp. 1027–1034. doi:10.1515/9783110841237-104. ISBN 978-3-11-084123-7 
  2. ^ a b Poole & Penny (2007). “Engulfed by speculation”. Nature 447: 913. doi:10.1038/447913a. 
  3. ^ Spang, et al. (2015). “Complex archaea that bridge the gap between prokaryotes and eukaryotes”. Nature 521: 173–179. doi:10.1038/nature14447. 
  4. ^ Zaremba-Niedzwiedzka, et al. (2017). “Asgard archaea illuminate the origin of eukaryotic cellular complexity”. Nature 541 (7637): 353–358. doi:10.1038/nature21031. 
  5. ^ Shiratori et al. (2019). “Phagocytosis-like cell engulfment by a planctomycete bacterium”. Nat. Commun. 10: 5529. doi:10.1038/s41467-019-13499-2. 
  6. ^ Cavalier-Smith, T. (1987). “The origin of eukaryote and archaebacterial cells”. Ann. NY Acad. Sci. 503 (1): 17-54. doi:10.1111/j.1749-6632.1987.tb40596.x. 
  7. ^ a b Cavalier-Smith, T. (1987). “The Origin of Cells: A Symbiosis between Genes, Catalysts, and Membranes”. Evolution of Catalytic Function. Cold Spring Harbor Symposia on Quantitative Biology. 52. Cold Spring Harbor Laboratory. pp. 805-824. doi:10.1101/SQB.1987.052.01.089. ISBN 0879690542 
  8. ^ a b c d Cavalier-Smith, T. (1998). “A revised six-kingdom system of life”. Biol. Rev. Camb. Philos. Soc. 73: 203-266. doi:10.1111/j.1469-185X.1998.tb00030.x. 
  9. ^ a b Cavalier-Smith, T. (2003). “The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): Their evolutionary affinities and new higher taxa”. Int. J. Syst. Evol. Microbiol. 53 (6): 1741-1758. doi:10.1099/ijs.0.02548-0. 
  10. ^ Muller, M. (1980). “The hydrogenosome”. In Gooday, G.W., et al. (eds.). The eukaryotic microbial cell. Cambridge University Press. pp. 127-142. ISBN 052122974X 
  11. ^ Cavalier-Smith, T. (1987). “The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies”. Ann. NY Acad. Sci. 503 (1): 55-71. doi:10.1111/j.1749-6632.1987.tb40597.x. 
  12. ^ Bui, E., et al. (1996). “A common evolutionary origin for mitochondria and hydrogenosomes”. Proc. Natl. Acad. Sci. USA 93 (18): 9651-9656. doi:10.1073/pnas.93.18.9651. 
  13. ^ Sogin, M.L. (1989). “Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs”. Amer. Zool. 29 (2): 487-499. doi:10.1093/icb/29.2.487. 
  14. ^ Cavalier-Smith, T. (1991). “Archamoebae: the ancestral eukaryotes?”. BioSystems 25 (1-2): 25-38. doi:10.1016/0303-2647(91)90010-I. 
  15. ^ Cavalier-Smith, T. & Chao, E.E. (1996). “Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote”. J. Mol. Evol. 43 (6): 551-562. doi:10.1007/BF02202103. 
  16. ^ Cavalier-Smith, T. (1997). “Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa”. Arch. Protistenkd. 147 (3-4): 237-258. doi:10.1016/S0003-9365(97)80051-6. 
  17. ^ Clark, C.G. & Roger A.J. (1995). “Direct evidence for secondary loss of mitochondria in Entamoeba histolytica”. Proc. Natl. Acad. Sci. USA 92 (14): 6518-6521. doi:10.1073/pnas.92.14.6518. 
  18. ^ Tovar, J., et al. (1999). “The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica”. Mol. Microbiol. 32 (5): 1013–1021. doi:10.1046/j.1365-2958.1999.01414.x. 
  19. ^ Mai, Z., et al. (1999). “Hsp60 Is Targeted to a Cryptic Mitochondrion-Derived Organelle (“Crypton”) in the Microaerophilic Protozoan Parasite Entamoeba histolytica”. Mol. Cell. Biol. 19 (3): 2198-205. 
  20. ^ Cavalier-Smith, T. (1993). “Kingdom protozoa and its 18 phyla” (pdf). Microb. Rev. 57: 953-994. https://mmbr.asm.org/content/57/4/953.full.pdf. 
  21. ^ Germot, A., et al. (1997). “Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae”. Mol. Biochem. Parasitol. 87 (2): 159-168. doi:10.1016/S0166-6851(97)00064-9. 
  22. ^ Williams, B.A., et al. (2002). “A mitochondrial remnant in the microsporidian Trachipleistophora hominis”. Nature 418 (6900): 865–869. doi:10.1038/nature00949. 
  23. ^ Soltys, B.J. & Gupta, R.S. (1994). “Presence and Cellular Distribution of a 60-kDa Protein Related to Mitochondrial HSP60 in Giardia lamblia”. J. Parasitol. 80 (4): 580-590. doi:10.2307/3283195. 
  24. ^ Nixon, J.E., et al. (2002). “A spliceosomal intron in Giardia lamblia”. Proc. Natl. Acad. Sci. USA 99 (6): 3701-3705. doi:10.1073/pnas.042700299. 
  25. ^ Tovar, J., et al. (2003). “Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation”. Nature 426 (6963): 172-176. doi:10.1038/nature01945. 
  26. ^ Acosta-Virgen, K., et al. (2018). “Giardia lamblia: Identification of peroxisomal-like proteins”. Exp. Parasitol. 191: 36-43. doi:10.1016/j.exppara.2018.06.006. 
  27. ^ Karnkowska, A., et al. (2016). “A eukaryote without a mitochondrial organelle”. Curr. Biol. 26 (10): 1274-1284. doi:10.1016/j.cub.2016.03.053.