コンテンツにスキップ

Elementary Calculus: An Infinitesimal Approach

出典: フリー百科事典『ウィキペディア(Wikipedia)』
Elementary Calculus: An Infinitesimal Approach
著者H. Jerome Keisler
言語English
題材Mathematics
出版社Dover

H. J.  Elementary Calculus: An Infinitesimal approach An approach using infinitesimals CC BY-NC-SA[1]

[]


 Foundations of Infinitesimal Calculus

εδ 5



 f調 f f


[]


[2][3][4] [5]5 Elementary Calculus [6][7][8]Katz & Katz (2010) [9][10]

G. R. Blackley  Prindle, Weber & Schmidt  Elementary Calculus: An Approach Using Infinitesimals  "Such problems as might arise with the book will be political. It is revolutionary. Revolutions are seldom welcomed by the established party, although revolutionaries often are.":[11]

Hrbacek εδ  εδ [12] Błaszczyk microcontinuityHrbacek ("dubious lament") [13]

[]




 (extension principle)  (transfer principle) : 

Every real statement that holds for one or more particular real functions holds for the hyperreal natural extensions of these functions.: 

:
  • 加法が閉じていること: 任意の x, y に対し、和 x + y が定義される。
  • 加法の交換法則: x + y = y + x.
  • 大小関係の逆数法則: 0 < x < y ならば 0 < 1/y < 1/x.
  • 零除算の除外: x/0定義されない英語版
  • 代数的な恒等式: .
  • 三角恒等式: .
  • 対数法則: x > 0 かつ y > 0 ならば .

関連項目[編集]

[編集]

注釈[編集]

出典[編集]

  1. ^ Keisler 2012.
  2. ^ Davis & Hausner 1978.
  3. ^ Blass 1978.
  4. ^ Madison & Stroyan 1977.
  5. ^ http://www.math.wisc.edu/oldhome/directories/alumni/1974.htm
  6. ^ Keisler 2011.
  7. ^ Sullivan 1976.
  8. ^ Tall 1980.
  9. ^ O'Donovan & Kimber 2006.
  10. ^ O'Donovan 2007.
  11. ^ Sullivan, Kathleen (1976). “Mathematical Education: The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach”. Amer. Math. Monthly 83 (5): 370–375. doi:10.2307/2318657. 
  12. ^ Hrbacek 2007.
  13. ^ Błaszczyk, Piotr; Katz, Mikhail; Sherry, David (2012), “Ten misconceptions from the history of analysis and their debunking”, Foundations of Science 18: 43–74, arXiv:1202.4153, doi:10.1007/s10699-012-9285-8 

[]


: Keisler, H. Jerome (1976), Elementary Calculus: An Approach Using Infinitesimals, Prindle Weber & Schmidt 
: Keisler, H. Jerome (1976), Foundations of Infinitesimal Calculus, Prindle Weber & Schmidt, ISBN 978-0871502155, http://www.math.wisc.edu/~keisler/foundations.html 2007110 

: Keisler, H. Jerome (1986), Elementary Calculus: An Infinitesimal Approach, Prindle Weber & Schmidt, http://www.math.wisc.edu/~keisler/calc.html 

: Keisler, H. Jerome (2012), Elementary Calculus: An Infinitesimal Approach (2nd ed.), New York: Dover Publications, ISBN 978-0-486-48452-5 

 http://www.math.wisc.edu/~keisler/calc.html  (PDF) http://www.math.wisc.edu/~keisler/foundations.html 

:   19861979ISBN 978-4489001826https://iss.ndl.go.jp/books/R100000002-I000001407989-00 

[]


Bishop, Errett (1977), Review: H. Jerome Keisler, Elementary calculus, Bull. Amer. Math. Soc. 83: 205208, doi:10.1090/s0002-9904-1977-14264-x, http://projecteuclid.org/euclid.bams/1183538669 

Blass, Andreas (1978), Review: Martin Davis, Applied nonstandard analysis, and K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, and H. Jerome Keisler, Foundations of infinitesimal calculus, Bull. Amer. Math. Soc. 84 (1): 3441, doi:10.1090/S0002-9904-1978-14401-2, http://www.ams.org/journals/bull/1978-84-01/S0002-9904-1978-14401-2/home.html[ 1] 

Davis, Martin (1977), Review: J. Donald Monk, Mathematical logic, Bull. Amer. Math. Soc. 83: 10071011, doi:10.1090/S0002-9904-1977-14357-7, http://projecteuclid.org/euclid.bams/1183539465 

Davis, M.; Hausner, M (1978), Book review. The Joy of Infinitesimals. J. Keisler's Elementary Calculus, Mathematical Intelligencer 1: 168170, doi:10.1007/bf03023265, http://www.springerlink.com/content/d9u46n637vrtr875/fulltext.pdf .

Hrbacek, K.; Lessmann, O.; ODonovan, R. (November 2010), Analysis with Ultrasmall Numbers, American Mathematical Monthly 117 (9): 801816, doi:10.4169/000298910x521661 

Hrbacek, K. (2007), Stratified Analysis?, in Van Den Berg, I.; Neves, V., The Strength of Nonstandard Analysis, Springer 

Katz, Karin Usadi; Katz, Mikhail G. (2010), When is .999... less than 1?, The Montana Mathematics Enthusiast 7 (1): 330, arXiv:1007.3018, Bibcode: 2010arXiv1007.3018U, 20 July 2011, https://web.archive.org/web/20110720095125/http://www.math.umt.edu/TMME/vol7no1/ 

Madison, E. W.; Stroyan, K. D. (JunJul 1977), Elementary Calculus. by H. Jerome Keisler, The American Mathematical Monthly 84 (6): 496500, doi:10.2307/2321930, JSTOR 2321930, https://jstor.org/stable/2321930 

O'Donovan, R. (2007), Pre-University Analysis, in Van Den Berg, I.; Neves, V., The Strength of Nonstandard Analysis, Springer 

O'Donovan, R.; Kimber, J. (2006), Nonstandard analysis at pre-university level: Naive magnitude analysis, in Cultand, N; Di Nasso, M.; Ross, Nonstandard Methods and Applications in Mathematics, Lecture Notes in Logic, 25 

Stolzenberg, G. (June 1978), Letter to the Editor, Notices of the American Mathematical Society 25 (4): 242 

Sullivan, Kathleen (1976), The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach, The American Mathematical Monthly (Mathematical Association of America) 83 (5): 370375, doi:10.2307/2318657, JSTOR 2318657, https://jstor.org/stable/2318657 

Tall, David (1980), Intuitive infinitesimals in the calculus (poster), Fourth International Congress on Mathematics Education, Berkeley, http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot1980c-intuitive-infls.pdf 

  1. ^
    Blass writes: "I suspect that many mathematicians harbor, somewhere in the back of their minds, the formula for arc length (and quickly factor out dx before writing it down)" (p. 35).
    "Often, as in the examples above, the nonstandard definition of a concept is simpler than the standard definition (both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types or fewer alternations of quantifiers)" (p. 37).
    "The relative simplicity of the nonstandard definitions of some concepts of elementary analysis suggests a pedagogical application in freshman calculus. One could make use of the students' intuitive ideas about infinitesimals (which are usually very vague, but so are their ideas about real numbers) to develop calculus on a nonstandard basis" (p. 38).