Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production and occurrence  



1.1  Preparation of aromatic nitro compounds  





1.2  Preparation of aliphatic nitro compounds  



1.2.1  Tar Meer Reaction  







1.3  Occurrence in nature  







2 Reactions of aliphatic nitro compounds  



2.1  Reduction  





2.2  Acid-base reactions  





2.3  Condensation reactions  





2.4  Biochemical reactions  







3 Reactions of aromatic nitro compounds  



3.1  Explosions  







4 See also  





5 References  














Nitro compound: Difference between revisions






Afrikaans
العربية
Azərbaycanca
Čeština
Dansk
Deutsch
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano

Қазақша
Latviešu
Magyar

Plattdüütsch
Polski
Português
Română
Русский
Simple English
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




Print/export  







In other projects  



Wikimedia Commons
Wikiquote
 
















Appearance
   

 





Help
 

From Wikipedia, the free encyclopedia
 


Browse history interactively
 Previous editNext edit 
Content deleted Content added
JakeMorenc (talk | contribs)
35 edits
removing 1 hyphen: —> "naturally occurring"—WP:HYPHEN, sub-subsection 3, point 4
Line 32: Line 32:


=== Occurrence in nature ===

=== Occurrence in nature ===

[[Chloramphenicol]] is a rare example of a [[Natural product|naturally-occurring]] nitro compound. At least some naturally occurring nitro groups arised by the oxidation of amino groups.<ref>Georg Zocher, Robert Winkler, Christian Hertweck, Georg E. Schulz "Structure and Action of the N-oxygenase AurF from ''Streptomyces thioluteus''" ''J. Molecular Biology'' (2007) '''373''', 65–74. {{doi|10.1016/j.jmb.2007.06.014}}</ref> 2-Nitrophenol is an aggregation [[pheromone]] of [[ticks]].

[[Chloramphenicol]] is a rare example of a [[Natural product|naturally occurring]] nitro compound. At least some naturally occurring nitro groups arised by the oxidation of amino groups.<ref>Georg Zocher, Robert Winkler, Christian Hertweck, Georg E. Schulz "Structure and Action of the N-oxygenase AurF from ''Streptomyces thioluteus''" ''J. Molecular Biology'' (2007) '''373''', 65–74. {{doi|10.1016/j.jmb.2007.06.014}}</ref> 2-Nitrophenol is an aggregation [[pheromone]] of [[ticks]].



Examples of nitro compounds are rare in nature. [[3-Nitropropionic acid]] found in [[fungus|fungi]] and plants (''[[Indigofera]]''). [[Nitropentadecene]] is a defense compound found in [[termite]]s. Nitrophenylethane is found in ''Aniba canelilla''.<ref>José Guilherme S. Maia, Eloísa Helena A. Andrade "Database of the Amazon aromatic plants and their essential oils" ''Quim. Nova'', (2009) '''32'''(3), 595–622, 2009 [http://www.scielo.br/pdf/qn/v32n3/a06v32n3.pdf]</ref> Nitrophenylethane is also found in members of the Annonaceae, Lauraceae and Papaveraceae.<ref>Klaus Kubitzki, Jens G. Rohwer, Volker Bittrich『Flowering Plants · Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families』1993, Springer-Verlag, Berlin</ref>

Examples of nitro compounds are rare in nature. [[3-Nitropropionic acid]] found in [[fungus|fungi]] and plants (''[[Indigofera]]''). [[Nitropentadecene]] is a defense compound found in [[termite]]s. Nitrophenylethane is found in ''Aniba canelilla''.<ref>José Guilherme S. Maia, Eloísa Helena A. Andrade "Database of the Amazon aromatic plants and their essential oils" ''Quim. Nova'', (2009) '''32'''(3), 595–622, 2009 [http://www.scielo.br/pdf/qn/v32n3/a06v32n3.pdf]</ref> Nitrophenylethane is also found in members of the Annonaceae, Lauraceae and Papaveraceae.<ref>Klaus Kubitzki, Jens G. Rohwer, Volker Bittrich『Flowering Plants · Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families』1993, Springer-Verlag, Berlin</ref>


Revision as of 00:20, 11 December 2016

The structure of the nitro group

Nitro compounds are organic compounds that contain one or more nitro functional groups (−Template:NitrogenTemplate:Oxygen2). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature, being almost invariably produced by nitration reactions starting with nitric acid.

Production and occurrence

Preparation of aromatic nitro compounds

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture of nitric acid and sulfuric acid, which produce the nitronium ion (NO2+), which the electrophile:

The nitration product produced on the largest scale, by far, is nitrobenzene. Many explosives are produced by nitration including trinitrophenol (picric acid), trinitrotoluene (TNT), and trinitroresorcinol (styphnic acid).[1] Another but more specialized method for making aryl-NO2 group starts from halogenated phenols, is the Zinke nitration.

Preparation of aliphatic nitro compounds

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Tar Meer Reaction

Innucleophilic aliphatic substitution, sodium nitrite (NaNO2) replaces an alkyl halide. In the so-called Ter Meer reaction (1876) named after Edmund ter Meer,[8] the reactant is a 1,1-halonitroalkane:

The ter Meer reaction

The reaction mechanism is proposed in which in the first slow step a proton is abstracted from nitroalkane 1 to a carbanion 2 followed by protonation to a nitronate 3 and finally nucleophilic displacement of chlorine based on an experimentally observed hydrogen kinetic isotope effect of 3.3.[9] When the same reactant is reacted with potassium hydroxide the reaction product is the 1,2-dinitro dimer[10]

Occurrence in nature

Chloramphenicol is a rare example of a naturally occurring nitro compound. At least some naturally occurring nitro groups arised by the oxidation of amino groups.[11] 2-Nitrophenol is an aggregation pheromoneofticks.

Examples of nitro compounds are rare in nature. 3-Nitropropionic acid found in fungi and plants (Indigofera). Nitropentadecene is a defense compound found in termites. Nitrophenylethane is found in Aniba canelilla.[12] Nitrophenylethane is also found in members of the Annonaceae, Lauraceae and Papaveraceae.[13]

Reactions of aliphatic nitro compounds

Reduction

Nitro compounds participate in several organic reactions, the most important being their reduction to the corresponding amines:

RNO2 + 3 H2 → RNH2 + 2 H2O

Acid-base reactions

Nitroalkanes are somewhat acidic. The pKas of nitromethane and isopropyl nitrate, are 17.2 and 16.9 in DMSO solution. These values suggest aqueous pKas of around 11.[14] In other words, these carbon acids can be deprotonated in aqueous solution. The conjugate base is called nitronate. Nitronates protonate at oxygen to give a tautomer of nitroalkyl precursor. This process is the start of a reaction that converts nitronates to aldehydesorketones, called the Nef reaction.

Condensation reactions

Nitromethane undergoes base-catalyzed additions to aldehydes in 1,2-addition in the nitroaldol reaction. Similarly, it adds to alpha-beta unsaturated carbonyl compounds as a 1,4-addition in the Michael reaction as a Michael donor. Nitroalkenes are Michael acceptors in the Michael reaction with enolate compounds.[15][16]

Biochemical reactions

Many flavin-dependent enzymes are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones. Nitroalkane oxidase and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as glucose oxidase have other physiological substrates.[17]

Reactions of aromatic nitro compounds

Reduction of aromatic nitro compounds with hydrogen over a meta catalysts gives anilines. Virtually all aromatic amines (anilines) are derived from nitroaromatics. A variation is formation of a dimethylaminoarene with palladium on carbon and formaldehyde:[18]

Nitro compound hydrogenation

The Leimgruber–Batcho, Bartoli and Baeyer–Emmerling indole syntheses begin with aromatic nitro compounds. Indigo can be synthesized in a condensation reaction from ortho-nitrobenzaldehyde and acetone in strongly basic conditions in a reaction known as the Baeyer–Drewson indigo synthesis.

Explosions

Explosive decomposition of organo nitro compounds are redox reactions, wherein both the oxidant (nitro group) and the fuel (hydrocarbon substituent) are bound within the same molecule. The explosion process generates heat by forming highly stable products including molecular nitrogen (N2), carbon dioxide, and water. The explosive power of this redox reaction is enhanced because these stable products are gases at mild temperatures. Many contact explosives contain the nitro group.

See also

References

  1. ^ Gerald Booth "Nitro Compounds, Aromatic" 'Ullmann's Encyclopedia of Industrial Chemistry', 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a17_411
  • ^ Markofsky, Sheldon; Grace, W.G. (2000). "Nitro Compounds, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a17_401.
  • ^ Kornblum, N.; Ungnade, H. E. (1963). "1-Nitroöctane". Organic Syntheses. 4: 724. doi:10.15227/orgsyn.038.0075.
  • ^ Walden, P. (1907). "Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper". Berichte der deutschen chemischen Gesellschaft. 40 (3): 3214–3217. doi:10.1002/cber.19070400383.
  • ^ Whitmore, F. C.; Whitmore, Marion G. (1923). "Nitromethane". Organic Syntheses. 1: 401. doi:10.15227/orgsyn.003.0083.
  • ^ Olah, George A.; Ramaiah, Pichika; Chang-Soo, Lee; Prakash, Surya (1992). "Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid". Synlett. 4: 337–339. doi:10.1055/s-1992-22006.
  • ^ Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds". The Journal of Organic Chemistry. 42 (5): 844–847. doi:10.1021/jo00425a017.
  • ^ Edmund ter Meer (1876). "Ueber Dinitroverbindungen der Fettreihe". Justus Liebigs Annalen der Chemie. 181 (1): 1–22. doi:10.1002/jlac.18761810102.
  • ^ aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction M. Frederick Hawthorne J. Am. Chem. Soc.; 1956; 78(19) pp 4980–4984; doi:10.1021/ja01600a048
  • ^ 3-Hexene, 3,4-dinitro- D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp. Organic Syntheses, Coll. Vol. 4, p.372 (1963); Vol. 37, p.23 (1957). (Article)
  • ^ Georg Zocher, Robert Winkler, Christian Hertweck, Georg E. Schulz "Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus" J. Molecular Biology (2007) 373, 65–74. doi:10.1016/j.jmb.2007.06.014
  • ^ José Guilherme S. Maia, Eloísa Helena A. Andrade "Database of the Amazon aromatic plants and their essential oils" Quim. Nova, (2009) 32(3), 595–622, 2009 [1]
  • ^ Klaus Kubitzki, Jens G. Rohwer, Volker Bittrich『Flowering Plants · Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families』1993, Springer-Verlag, Berlin
  • ^ Bordwell, F. G.; Satish, A. V., "Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?", J. Am. Chem. Soc. 1994, volume 116, 8885-8889. doi:10.1021/ja00099a004
  • ^ Ranganathan, Darshan; Rao, Bhushan; Ranganathan, Subramania; Mehrotra, Ashok; Iyengar, Radha (1980). "Nitroethylene: a stable, clean, and reactive agent for organic synthesis". The Journal of Organic Chemistry. 45 (7): 1185–1189. doi:10.1021/jo01295a003. Retrieved 5 January 2014. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  • ^ Jubert, Carole; Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI". The Journal of Organic Chemistry. 57 (20): 5431–5438. doi:10.1021/jo00046a027. Retrieved 5 January 2014. {{cite journal}}: Unknown parameter |lastauthoramp= ignored (|name-list-style= suggested) (help)
  • ^ Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M. (2006). "Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover". Biochemistry. 45 (4): 1138–50. doi:10.1021/bi051966w. PMC 1855086. PMID 16430210.
  • ^ Organic Syntheses, Coll. Vol. 5, p.552 (1973); Vol. 47, p.69 (1967). http://orgsynth.org/orgsyn/pdfs/CV5P0552.pdf

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitro_compound&oldid=754128171"

    Categories: 
    Use dmy dates from May 2013
    Nitro compounds
    Functional groups
    Hidden categories: 
    CS1 errors: unsupported parameter
    Articles with invalid date parameter in template
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 11 December 2016, at 00:20 (UTC).

    This version of the page has been revised. Besides normal editing, the reason for revision may have been that this version contains factual inaccuracies, vandalism, or material not compatible with the Creative Commons Attribution-ShareAlike License.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki