Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Aromatic nitration  





2 Scope  





3 Ipso nitration  





4 See also  





5 References  














Nitration






Afrikaans
العربية
Català
Čeština
Deutsch
Eesti
Español
Euskara
فارسی
Français

Հայերեն
Hrvatski
Bahasa Indonesia
Italiano
עברית

Latviešu
Magyar
Bahasa Melayu
Nederlands
Polski
Português
Română
Русский
Slovenčina
Slovenščina
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inorganic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group (−NO2) into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters (−ONO2) between alcohols and nitric acid (as occurs in the synthesisofnitroglycerin). The difference between the resulting molecular structures of nitro compounds and nitrates (NO3) is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom (typically carbon or another nitrogen atom), whereas in nitrate esters (also called organic nitrates), the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom (nitrito group).

There are many major industrial applications of nitration in the strict sense; the most important by volume are for the production of nitroaromatic compounds such as nitrobenzene.

Nitration reactions are notably used for the production of explosives, for example the conversion of guanidinetonitroguanidine and the conversion of toluenetotrinitrotoluene (TNT). However, they are of wide importance as chemical intermediates and precursors. Millions of tons of nitroaromatics are produced annually.[1]

Aromatic nitration[edit]

Typical nitration syntheses apply so-called "mixed acid", a mixture of concentrated nitric acid and sulfuric acids.[2] This mixture produces the nitronium ion (NO2+), which is the active species in aromatic nitration. This active ingredient, which can be isolated in the case of nitronium tetrafluoroborate,[3] also effects nitration without the need for the mixed acid. In mixed-acid syntheses sulfuric acid is not consumed and hence acts as a catalyst as well as an absorbent for water. In the case of nitration of benzene, the reaction is conducted at a warm temperature, not exceeding 50 °C. [4] The process is one example of electrophilic aromatic substitution, which involves the attack by the electron-rich benzene ring:

Aromatic nitration mechanism

Alternative mechanisms have also been proposed, including one involving single electron transfer (SET).[5][6] Acetyl nitrate had also been used as a nitration agent.[7][8]

Scope[edit]

Selectivity can be a challenge in nitrations because as a rule more than one compound may result but only one is desired, so alternative products act as contaminants or are simply wasted. Accordingly, it is desirable to design syntheses with suitable selectivity; for example, by controlling the reaction conditions, fluorenone can be selectively trinitrated[9] or tetranitrated.[10]

The substituents on aromatic rings affect the rate of this electrophilic aromatic substitution. Deactivating groups such as other nitro groups have an electron-withdrawing effect. Such groups deactivate (slow) the reaction and directs the electrophilic nitronium ion to attack the aromatic meta position. Deactivating meta-directing substituents include sulfonyl, cyano groups, keto, esters, and carboxylates. Nitration can be accelerated by activating groups such as amino, hydroxy and methyl groups also amides and ethers resulting in para and ortho isomers.

The direct nitration of aniline with nitric acid and sulfuric acid, according to one source,[11] results in a 50/50 mixture of para- and meta-nitroaniline isomers. In this reaction the fast-reacting and activating aniline (ArNH2) exists in equilibrium with the more abundant but less reactive (deactivated) anilinium ion (ArNH3+), which may explain this reaction product distribution. According to another source,[12] a more controlled nitration of aniline starts with the formation of acetanilide by reaction with acetic anhydride followed by the actual nitration. Because the amide is a regular activating group the products formed are the para and ortho isomers. Heating the reaction mixture is sufficient to hydrolyze the amide back to the nitrated aniline.

In the Wolffenstein–Böters reaction, benzene reacts with nitric acid and mercury(II) nitrate to give picric acid.

Ipso nitration[edit]

With aryl chlorides, triflates and nonaflates, ipso nitration may also take place.[13] The phrase ipso nitration was first used by Perrin and Skinner in 1971, in an investigation into chloroanisole nitration.[14] In one protocol, 4-chloro-n-butylbenzene is reacted with sodium nitriteint-butanol in the presence of 0.5 mol% Pd2(dba)3, a biarylphosphine ligand and a phase-transfer catalyst to provide 4-nitro-n-butylbenzene.[15]

See also[edit]

References[edit]

  1. ^ Gerald Booth (2007). "Nitro Compounds, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_411. ISBN 978-3527306732.
  • ^ John McMurry Organic Chemistry 2nd Ed.
  • ^ George A. Olah and Stephen J. Kuhn. "Benzonitrile, 2-methyl-3,5-dinitro-". Organic Syntheses; Collected Volumes, vol. 5, p. 480.
  • ^ "Nitration of benzene and methylbenzene".
  • ^ Esteves, P. M.; Carneiro, J. W. M.; Cardoso, S. P.; Barbosa, A. G. H.; Laali, K. K.; Rasul, G.; Prakash, G. K. S.; e Olah, G. A. (2003). "Unified Mechanism Concept of Electrophilic Aromatic Nitration Revisited: Convergence of Computational Results and Experimental Data". J. Am. Chem. Soc. 125 (16): 4836–49. doi:10.1021/ja021307w. PMID 12696903.
  • ^ Queiroz, J. F.; Carneiro, J. W. M.; Sabino A. A.; Sparapan, R.; Eberlin, M. N.; Esteves, P. M. (2006). "Electrophilic Aromatic Nitration: Understanding Its Mechanism and Substituent Effects". J. Org. Chem. 71 (16): 6192–203. doi:10.1021/jo0609475. PMID 16872205.
  • ^ Bordwell, F. G.; Garbisch, Edgar W. (July 1960). "Nitrations with Acetyl Nitrate. I. The Nature of the Nitrating Agent and the Mechanism of Reaction with Simple Alkenes". Journal of the American Chemical Society. 82 (14): 3588–3598. doi:10.1021/ja01499a029.
  • ^ Louw, Robert (15 April 2001). "Acetyl Nitrate". Encyclopedia of Reagents for Organic Synthesis: ra032. doi:10.1002/047084289X.ra032.
  • ^ E. O. Woolfolk and Milton Orchin. "2,4,7-Trinitrofluorenone". Organic Syntheses; Collected Volumes, vol. 3, p. 837.
  • ^ Melvin S. Newman and H. Boden. "2,4,5,7-Tetranitrofluorenone". Organic Syntheses; Collected Volumes, vol. 5, p. 1029.
  • ^ Web resource: warren-wilson.edu Archived 2012-03-20 at the Wayback Machine
  • ^ Mechanism and synthesis Peter Taylor, Royal Society of Chemistry (Great Britain), Open University
  • ^ Prakash, G.; Mathew, T. (2010). "Ipso-Nitration of Arenes". Angewandte Chemie International Edition in English. 49 (10): 1726–1728. doi:10.1002/anie.200906940. PMID 20146295.
  • ^ Perrin, C. L.; Skinner, G. A. (1971). "Directive effects in electrophilic aromatic substitution ("ipso factors"). Nitration of haloanisoles". Journal of the American Chemical Society. 93 (14): 3389. doi:10.1021/ja00743a015.
  • ^ Fors, B.; Buchwald, S. (2009). "Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics". Journal of the American Chemical Society. 131 (36): 12898–12899. doi:10.1021/ja905768k. PMC 2773681. PMID 19737014.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitration&oldid=1173834808"

    Categories: 
    Nitration reactions
    Substitution reactions
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 4 September 2023, at 18:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki