Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Carbon-11  





3 Natural isotopes  





4 Paleoclimate  





5 Tracing food sources and diets  





6 See also  





7 References  














Isotopes of carbon






العربية
Asturianu

Català
Чӑвашла
Čeština
Ελληνικά
Español
Esperanto
فارسی
Français

Bahasa Indonesia
Italiano

Magyar
Nederlands

Norsk bokmål
Português
Русский
Simple English
Svenska
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Carbon isotope)

Isotopesofcarbon (6C)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
11C synth 20.34 min β+ 11B
12C 98.9% stable
13C 1.06% stable
14C 1ppt (11012) 5.70×103 y β 14N
Standard atomic weight Ar°(C)
  • [12.009612.0116][1]
  • 12.011±0.002 (abridged)[2]
  • talk
  • edit
  • Carbon (6C) has 14 known isotopes, from 8
    C
    to20
    C
    as well as 22
    C
    , of which 12
    C
    and 13
    C
    are stable. The longest-lived radioisotopeis14
    C
    , with a half-lifeof5.70(3)×103 years. This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reaction 14
    N
    +
    n
    14
    C
    + 1
    H
    . The most stable artificial radioisotope is 11
    C
    , which has a half-life of 20.3402(53) min. All other radioisotopes have half-lives under 20 seconds, most less than 200 milliseconds. The least stable isotope is 8
    C
    , with a half-life of 3.5(1.4)×10−21 s. Light isotopes tend to decay into isotopes of boron and heavy ones tend to decay into isotopes of nitrogen.

    List of isotopes[edit]

    Nuclide
    Z N Isotopic mass (Da)[3]
    [n 1]
    Half-life[4]

    [resonance width]
    Decay
    mode
    [4]
    [n 2]
    Daughter
    isotope

    [n 3]
    Spin and
    parity[4]
    [n 4][n 5]
    Natural abundance (mole fraction)
    Normal proportion[4] Range of variation
    8
    C
    6 2 8.037643(20) 3.5(1.4) zs
    [230(50) keV]
    2p 6
    Be
    [n 6]
    0+
    9
    C
    6 3 9.0310372(23) 126.5(9ms β+ (54.1(1.7)%) 9
    B
    3/2−
    β+α (38.4(1.6)%) 5
    Li
    [n 7]
    β+p (7.5(6)%) 8
    Be
    [n 8]
    10
    C
    6 4 10.01685322(8) 19.3011(15s β+ 10
    B
    0+
    11
    C
    [n 9]
    6 5 11.01143260(6) 20.3402(53) min β+ 11
    B
    3/2−
    11m
    C
    12160(40) keV ?[n 10] 10
    B
     ?
    1/2+
    12
    C
    6 6 12 exactly[n 11] Stable 0+ [0.9884, 0.9904][5]
    13
    C
    [n 12]
    6 7 13.003354835336(252) Stable 1/2− [0.0096, 0.0116][5]
    14
    C
    [n 13]
    6 8 14.003241989(4) 5.70(3)×103 y β 14
    N
    0+ Trace[n 14] <10−12
    14m
    C
    22100(100) keV IT 14
    C
    (2−)
    15
    C
    6 9 15.0105993(9) 2.449(5s β 15
    N
    1/2+
    16
    C
    6 10 16.014701(4) 750(6ms βn (99.0(3)%) 15
    N
    0+
    β (1.0(3)%) 16
    N
    17
    C
    6 11 17.022579(19) 193(6ms β (71.6(1.3)%) 17
    N
    3/2+
    βn (28.4(1.3)%) 16
    N
    β2n ?[n 10] 15
    N
     ?
    18
    C
    6 12 18.02675(3) 92(2ms β (68.5(1.5)%) 18
    N
    0+
    βn (31.5(1.5)%) 17
    N
    β2n ?[n 10] 16
    N
     ?
    19
    C
    [n 15]
    6 13 19.03480(11) 46.2(2.3) ms βn (47(3)%) 18
    N
    1/2+
    β (46.0(4.2)%) 19
    N
    β2n (7(3)%) 17
    N
    20
    C
    6 14 20.04026(25) 16(3ms βn (70(11)%) 19
    N
    0+
    β2n (< 18.6%) 18
    N
    β (> 11.4%) 20
    N
    22
    C
    [n 16]
    6 16 22.05755(25) 6.2(1.3) ms βn (61(14)%) 21
    N
    0+
    β2n (< 37%) 20
    N
    β (> 2%) 22
    N
    This table header & footer:
    1. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ Modes of decay:
    EC: Electron capture


    n: Neutron emission
    p: Proton emission
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Subsequently decays by double proton emission to 4
    He
    for a net reaction of 8
    C
    4
    He
    + 41
    H
  • ^ Immediately decays by proton emission to 4
    He
    for a net reaction of 9
    C
    → 2 4
    He
    + 1
    H
    +
    e+
  • ^ Immediately decays into two 4
    He
    atoms for a net reaction of 9
    C
    → 2 4
    He
    + 1
    H
    +
    e+
  • ^ Used for labeling molecules in PET scans
  • ^ a b c Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  • ^ The unified atomic mass unit is defined as 1/12 of the mass of an unbound atom of carbon-12 in its ground state.
  • ^ Ratio of 12C to 13C used to measure biological productivity in ancient times and differing types of photosynthesis
  • ^ Has an important use in radiodating (see carbon dating)
  • ^ Primarily cosmogenic, produced by neutrons striking atoms of 14
    N
    (14
    N
    +
    n
    14
    C
    + 1
    H
    )
  • ^ Has 1 halo neutron
  • ^ Has 2 halo neutrons
  • Carbon-11[edit]

    Carbon-11or11
    C
    is a radioactive isotope of carbon that decays to boron-11. This decay mainly occurs due to positron emission, with around 0.19–0.23% of decays instead occurring by electron capture.[6][7] It has a half-lifeof20.3402(53) min.

    11
    C
    11
    B
    +
    e+
    +
    ν
    e
    + 0.96 MeV
    11
    C
    +
    e
    11
    B
    +
    ν
    e
    + 1.98 MeV

    It is produced from nitrogen in a cyclotron by the reaction

    14
    N
    +
    p
    11
    C
    + 4
    He

    Carbon-11 is commonly used as a radioisotope for the radioactive labeling of molecules in positron emission tomography. Among the many molecules used in this context are the radioligands [11
    C
    ]DASB
    and [11
    C
    ]Cimbi-5
    .

    Natural isotopes[edit]

    There are three naturally occurring isotopes of carbon: 12, 13, and 14. 12
    C
    and 13
    C
    are stable, occurring in a natural proportion of approximately 93:1. 14
    C
    is produced by thermal neutrons from cosmic radiation in the upper atmosphere, and is transported down to earth to be absorbed by living biological material. Isotopically, 14
    C
    constitutes a negligible part; but, since it is radioactive with a half-life of 5.70(3)×103 years, it is radiometrically detectable. Since dead tissue does not absorb 14
    C
    , the amount of 14
    C
    is one of the methods used within the field of archeology for radiometric dating of biological material.

    Paleoclimate[edit]

    12
    C
    and 13
    C
    are measured as the isotope ratio δ13Cinbenthic foraminifera and used as a proxy for nutrient cycling and the temperature dependent air–sea exchange of CO2 (ventilation).[8] Plants find it easier to use the lighter isotopes (12
    C
    ) when they convert sunlight and carbon dioxide into food. For example, large blooms of plankton (free-floating organisms) absorb large amounts of 12
    C
    from the oceans. Originally, the 12
    C
    was mostly incorporated into the seawater from the atmosphere. If the oceans that the plankton live in are stratified (meaning that there are layers of warm water near the top, and colder water deeper down), then the surface water does not mix very much with the deeper waters, so that when the plankton dies, it sinks and takes away 12
    C
    from the surface, leaving the surface layers relatively rich in 13
    C
    . Where cold waters well up from the depths (such as in the North Atlantic), the water carries 12
    C
    back up with it; when the ocean was less stratified than today, there was much more 12
    C
    in the skeletons of surface-dwelling species. Other indicators of past climate include the presence of tropical species and coral growth rings.[9]

    Tracing food sources and diets[edit]

    The quantities of the different isotopes can be measured by mass spectrometry and compared to a standard; the result (e.g., the delta of the 13
    C
    = δ13
    C
    ) is expressed as parts per thousand (‰):[10]

    Stable carbon isotopes in carbon dioxide are utilized differentially by plants during photosynthesis.[citation needed] Grasses in temperate climates (barley, rice, wheat, rye, and oats, plus sunflower, potato, tomatoes, peanuts, cotton, sugar beet, and most trees and their nuts or fruits, roses, and Kentucky bluegrass) follow a C3 photosynthetic pathway that will yield δ13C values averaging about −26.5‰.[citation needed] Grasses in hot arid climates (maize in particular, but also millet, sorghum, sugar cane, and crabgrass) follow a C4 photosynthetic pathway that produces δ13C values averaging about −12.5‰.[11]

    It follows that eating these different plants will affect the δ13C values in the consumer's body tissues. If an animal (or human) eats only C3 plants, their δ13C values will be from −18.5 to −22.0‰ in their bone collagen and −14.5‰ in the hydroxylapatite of their teeth and bones.[12]

    In contrast, C4 feeders will have bone collagen with a value of −7.5‰ and hydroxylapatite value of −0.5‰.

    In actual case studies, millet and maize eaters can easily be distinguished from rice and wheat eaters. Studying how these dietary preferences are distributed geographically through time can illuminate migration paths of people and dispersal paths of different agricultural crops. However, human groups have often mixed C3 and C4 plants (northern Chinese historically subsisted on wheat and millet), or mixed plant and animal groups together (for example, southeastern Chinese subsisting on rice and fish).[13]

    See also[edit]

    References[edit]

    1. ^ "Standard Atomic Weights: Carbon". CIAAW. 2009.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ a b "Atomic Weight of Carbon". CIAAW.
  • ^ Scobie, J.; Lewis, G. M. (1 September 1957). "K-capture in carbon 11". Philosophical Magazine. 2 (21): 1089–1099. Bibcode:1957PMag....2.1089S. doi:10.1080/14786435708242737.
  • ^ Campbell, J. L.; Leiper, W.; Ledingham, K. W. D.; Drever, R. W. P. (1967-04-11). "The ratio of K-capture to positron emission in the decay of 11C". Nuclear Physics A. 96 (2): 279–287. Bibcode:1967NuPhA..96..279C. doi:10.1016/0375-9474(67)90712-9.
  • ^ Lynch-Stieglitz, Jean; Stocker, Thomas F.; Broecker, Wallace S.; Fairbanks, Richard G. (1995). "The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling". Global Biogeochemical Cycles. 9 (4): 653–665. Bibcode:1995GBioC...9..653L. doi:10.1029/95GB02574. S2CID 129194624.
  • ^ Tim Flannery The weather makers: the history & future of climate change, The Text Publishing Company, Melbourne, Australia. ISBN 1-920885-84-6
  • ^ Miller, Charles B.; Wheeler, Patricia (2012). Biological oceanography (2nd ed.). Chichester, West Sussex: John Wiley & Sons, Ltd. p. 186. ISBN 9781444333022. OCLC 794619582.
  • ^ O'Leary, Marion H. (May 1988). "Carbon Isotopes in Photosynthesis" (PDF). BioScience. 38 (5): 328–336. doi:10.2307/1310735. JSTOR 1310735. S2CID 29110460. Retrieved 17 November 2022.
  • ^ Tycot, R. H. (2004). M. Martini; M. Milazzo; M. Piacentini (eds.). "Stable isotopes and diet: you are what you eat" (PDF). Proceedings of the International School of Physics "Enrico Fermi" Course CLIV.
  • ^ Richard, Hedges (2006). "Where does our protein come from?". British Journal of Nutrition. 95 (6): 1031–2. doi:10.1079/bjn20061782. PMID 16768822.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_carbon&oldid=1226037074"

    Categories: 
    Isotopes of carbon
    Carbon
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from May 2018
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from March 2017
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 28 May 2024, at 06:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki