Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Niobium-92  





3 References  














Isotopes of niobium






Català
Чӑвашла
Čeština
Ελληνικά
Español
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Русский


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Isotopesofniobium (41Nb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
91Nb synth 680 y ε 91Zr
92Nb trace 3.47×107 y β+ 92Zr
93Nb 100% stable
93mNb synth 16.12 y IT 93Nb
94Nb trace 2.04×104 y β 94Mo
95Nb synth 34.991 d β 95Mo
Standard atomic weight Ar°(Nb)
  • 92.90637±0.00001[2]
  • 92.906±0.001 (abridged)[3]
  • talk
  • edit
  • Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotopeis92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta stateof93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

    Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay productof95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

    List of isotopes[edit]

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)
    [n 2][n 3]
    Half-life
    [n 4]
    Decay
    mode

    [n 5]
    Daughter
    isotope

    [n 6][n 7]
    Spin and
    parity
    [n 8][n 4]
    Isotopic
    abundance
    Excitation energy[n 4]
    81Nb 41 40 80.94903(161)# <44 ns β+, p 80Y 3/2−#
    p 80Zr
    β+ 81Zr
    82Nb 41 41 81.94313(32)# 51(5ms β+ 82Zr 0+
    83Nb 41 42 82.93671(34) 4.1(3s β+ 83Zr (5/2+)
    84Nb 41 43 83.93357(32)# 9.8(9s β+ (>99.9%) 84Zr 3+
    β+, p (<.1%) 83Y
    84mNb 338(10) keV 103(19ns (5−)
    85Nb 41 44 84.92791(24) 20.9(7s β+ 85Zr (9/2+)
    85mNb 759.0(10) keV 12(5s (1/2−)
    86Nb 41 45 85.92504(9) 88(1s β+ 86Zr (6+)
    86mNb 250(160)# keV 56(8s β+ 86Zr high
    87Nb 41 46 86.92036(7) 3.75(9) min β+ 87Zr (1/2−)
    87mNb 3.84(14) keV 2.6(1) min β+ 87Zr (9/2+)#
    88Nb 41 47 87.91833(11) 14.55(6) min β+ 88Zr (8+)
    88mNb 40(140) keV 7.8(1) min β+ 88Zr (4−)
    89Nb 41 48 88.913418(29) 2.03(7h β+ 89Zr (9/2+)
    89mNb 0(30)# keV 1.10(3h β+ 89Zr (1/2)−
    90Nb 41 49 89.911265(5) 14.60(5h β+ 90Zr 8+
    90m1Nb 122.370(22) keV 63(2) μs 6+
    90m2Nb 124.67(25) keV 18.81(6s IT 90Nb 4-
    90m3Nb 171.10(10) keV <1 μs 7+
    90m4Nb 382.01(25) keV 6.19(8ms 1+
    90m5Nb 1880.21(20) keV 472(13ns (11−)
    91Nb 41 50 90.906996(4) 680(130) a EC (99.98%) 91Zr 9/2+
    β+ (.013%)
    91m1Nb 104.60(5) keV 60.86(22d IT (93%) 91Nb 1/2−
    EC (7%) 91Zr
    β+ (.0028%)
    91m2Nb 2034.35(19) keV 3.76(12) μs (17/2−)
    92Nb 41 51 91.907194(3) 3.47(24)×107a β+ (99.95%) 92Zr (7)+ Trace
    β (.05%) 92Mo
    92m1Nb 135.5(4) keV 10.15(2d β+ 92Zr (2)+
    92m2Nb 225.7(4) keV 5.9(2) μs (2)−
    92m3Nb 2203.3(4) keV 167(4ns (11−)
    93Nb 41 52 92.9063781(26) Stable 9/2+ 1.0000
    93mNb 30.77(2) keV 16.13(14) a IT 93Nb 1/2−
    94Nb 41 53 93.9072839(26) 2.03(16)×104a β 94Mo (6)+ Trace
    94mNb 40.902(12) keV 6.263(4) min IT (99.5%) 94Nb 3+
    β (.5%) 94Mo
    95Nb 41 54 94.9068358(21) 34.991(6d β 95Mo 9/2+
    95mNb 235.690(20) keV 3.61(3d IT (94.4%) 95Nb 1/2−
    β (5.6%) 95Mo
    96Nb 41 55 95.908101(4) 23.35(5h β 96Mo 6+
    97Nb 41 56 96.9080986(27) 72.1(7) min β 97Mo 9/2+
    97mNb 743.35(3) keV 52.7(18s IT 97Nb 1/2−
    98Nb 41 57 97.910328(6) 2.86(6s β 98Mo 1+
    98mNb 84(4) keV 51.3(4) min β (99.9%) 98Mo (5+)
    IT (.1%) 98Nb
    99Nb 41 58 98.911618(14) 15.0(2s β 99Mo 9/2+
    99mNb 365.29(14) keV 2.6(2) min β (96.2%) 99Mo 1/2−
    IT (3.8%) 99Nb
    100Nb 41 59 99.914182(28) 1.5(2s β 100Mo 1+
    100mNb 470(40) keV 2.99(11s β 100Mo (4+, 5+)
    101Nb 41 60 100.915252(20) 7.1(3s β 101Mo (5/2#)+
    102Nb 41 61 101.91804(4) 1.3(2s β 102Mo 1+
    102mNb 130(50) keV 4.3(4s β 102Mo high
    103Nb 41 62 102.91914(7) 1.5(2s β 103Mo (5/2+)
    104Nb 41 63 103.92246(11) 4.9(3s β (99.94%) 104Mo (1+)
    β, n (.06%) 103Mo
    104mNb 220(120) keV 940(40ms β (99.95%) 104Mo high
    β, n (.05%) 103Mo
    105Nb 41 64 104.92394(11) 2.95(6s β (98.3%) 105Mo (5/2+)#
    β, n (1.7%) 104Mo
    106Nb 41 65 105.92797(21)# 920(40ms β (95.5%) 106Mo 2+#
    β, n (4.5%) 105Mo
    107Nb 41 66 106.93031(43)# 300(9ms β (94%) 107Mo 5/2+#
    β, n (6%) 106Mo
    108Nb 41 67 107.93484(32)# 0.193(17s β (93.8%) 108Mo (2+)
    β, n (6.2%) 107Mo
    109Nb 41 68 108.93763(54)# 190(30ms β (69%) 109Mo 5/2+#
    β, n (31%) 108Mo
    110Nb 41 69 109.94244(54)# 170(20ms β (60%) 110Mo 2+#
    β, n (40%) 109Mo
    111Nb 41 70 110.94565(54)# 80# ms [>300 ns] 5/2+#
    112Nb 41 71 111.95083(75)# 60# ms [>300 ns] 2+#
    113Nb 41 72 112.95470(86)# 30# ms [>300 ns] 5/2+#
    114Nb[4] 41 73
    115Nb[4] 41 74
    116Nb[5] 41 75
    117Nb[6] 41 76
    This table header & footer:
    1. ^ mNb – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  • ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • Niobium-92[edit]

    Niobium-92 is an extinct radionuclide[7] with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei.[7][8] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.[9]

    Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.[10]

    References[edit]

    1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ "Standard Atomic Weights: Niobium". CIAAW. 2017.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ a b Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  • ^ Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  • ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  • ^ a b Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of 92Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv:1602.00966. Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID 119299654.
  • ^ Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
  • ^ Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi:10.3847/2041-8213/acab5d. S2CID 255414098.
  • ^ Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_niobium&oldid=1229884825"

    Categories: 
    Isotopes of niobium
    Niobium
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 19 June 2024, at 06:51 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki