Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Boron-8  





3 Applications  



3.1  Boron-10  







4 References  














Isotopes of boron






العربية
Català
Чӑвашла
Čeština
Ελληνικά
Español
فارسی
Français

Bahasa Indonesia
Italiano
Magyar
Nederlands

Русский
Slovenščina
Svenska
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Isotopesofboron (5B)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
8B synth 771.9 ms β+ 8Be
10B 19.6% stable
11B 80.3% stable
Standard atomic weight Ar°(B)
  • [10.80610.821][1]
  • 10.81±0.02 (abridged)[2]
  • talk
  • edit
  • Boron (5B) naturally occurs as isotopes 10
    B
    and 11
    B
    , the latter of which makes up about 80% of natural boron. There are 13 radioisotopes that have been discovered, with mass numbers from 7 to 21, all with short half-lives, the longest being that of 8
    B
    , with a half-life of only 771.9(9ms and 12
    B
    with a half-life of 20.20(2ms. All other isotopes have half-lives shorter than 17.35 ms. Those isotopes with mass below 10 decay into helium (via short-lived isotopes of beryllium for 7
    B
    and 9
    B
    ) while those with mass above 11 mostly become carbon.

    A chart showing the abundances of the naturally occurring isotopes of boron.

    List of isotopes[edit]

    Nuclide
    [n 1]
    Z N Isotopic mass (Da)[3]
    [n 2][n 3]
    Half-life[4]

    [resonance width]
    Decay
    mode
    [4]
    [n 4]
    Daughter
    isotope

    [n 5]
    Spin and
    parity[4]
    [n 6][n 7]
    Natural abundance (mole fraction)
    Excitation energy Normal proportion[4] Range of variation
    6
    B
    ?[n 8]
    5 1 6.050800(2150) p-unstable 2p? 4
    Li
    ?
    2−#
    7
    B
    5 2 7.029712(27) 570(14ys
    [801(20) keV]
    p 6
    Be
    [n 9]
    (3/2−)
    8
    B
    [n 10][n 11]
    5 3 8.0246073(11) 771.9(9ms β+α 4
    He
    2+
    8m
    B
    10624(8) keV 0+
    9
    B
    5 4 9.0133296(10) 800(300) zs p 8
    Be
    [n 12]
    3/2−
    10
    B
    [n 13]
    5 5 10.012936862(16) Stable 3+ [0.189, 0.204][5]
    11
    B
    5 6 11.009305167(13) Stable 3/2− [0.796, 0.811][5]
    11m
    B
    12560(9) keV 1/2+, (3/2+)
    12
    B
    5 7 12.0143526(14) 20.20(2ms β (99.40(2)%) 12
    C
    1+
    βα (0.60(2)%) 8
    Be
    [n 14]
    13
    B
    5 8 13.0177800(11) 17.16(18ms β (99.734(36)%) 13
    C
    3/2−
    βn (0.266(36)%) 12
    C
    14
    B
    5 9 14.025404(23) 12.36(29ms β (93.96(23)%) 14
    C
    2−
    βn (6.04(23)%) 13
    C
    β2n ?[n 15] 12
    C
     ?
    14m
    B
    17065(29) keV 4.15(1.90) zs IT ?[n 15] 0+
    15
    B
    5 10 15.031087(23) 10.18(35ms βn (98.7(1.0)%) 14
    C
    3/2−
    β (< 1.3%) 15
    C
    β2n (< 1.5%) 13
    C
    16
    B
    5 11 16.039841(26) > 4.6 zs n ?[n 15] 15
    B
     ?
    0−
    17
    B
    [n 16]
    5 12 17.04693(22) 5.08(5ms βn (63(1)%) 16
    C
    (3/2−)
    β (21.1(2.4)%) 17
    C
    β2n (12(2)%) 15
    C
    β3n (3.5(7)%) 14
    C
    β4n (0.4(3)%) 13
    C
    18
    B
    5 13 18.05560(22) < 26 ns n 17
    B
    (2−)
    19
    B
    [n 16]
    5 14 19.06417(56) 2.92(13ms βn (71(9)%) 18
    C
    (3/2−)
    β2n (17(5)%) 17
    C
    β3n (< 9.1%) 16
    C
    β (> 2.9%) 19
    C
    20
    B
    [6]
    5 15 20.07451(59) > 912.4 ys n 19
    B
    (1−, 2−)
    21
    B
    [6]
    5 16 21.08415(60) > 760 ys 2n 19
    B
    (3/2−)
    This table header & footer:
    1. ^ mB – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ Modes of decay:
    n: Neutron emission
    p: Proton emission
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ This isotope has not yet been observed; given data is inferred or estimated from periodic trends.
  • ^ Subsequently decays by double proton emission to 4
    He
    for a net reaction of 7
    B
    4
    He
    + 3 1
    H
  • ^ Has 1 halo proton
  • ^ Intermediate product of a branch of proton-proton chain in stellar nucleosynthesis as part of the process converting hydrogen to helium
  • ^ Immediately decays into two α particles, for a net reaction of 9
    B
    → 2 4
    He
    + 1
    H
  • ^ One of the few stable odd-odd nuclei
  • ^ Immediately decays into two α particles, for a net reaction of 12
    B
    → 3 4
    He
    + e
  • ^ a b c Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  • ^ a b Has 2 halo neutrons
  • Boron-8[edit]

    Boron-8 is an isotope of boron that undergoes β+ decay to beryllium-8 with a half-life of 771.9(9ms. It is the strongest candidate for a halo nucleus with a loosely-bound proton, in contrast to neutron halo nuclei such as lithium-11.[7]

    Although neutrinos from boron-8 beta decays within the Sun make up only about 80 ppm of the total solar neutrino flux, they have a higher energy centered around 10 MeV,[8] and are an important background to dark matter direct detection experiments.[9] They are the first component of the neutrino floor that dark matter direct detection experiments are expected to eventually encounter.

    Applications[edit]

    Boron-10[edit]

    Boron-10 is used in boron neutron capture therapy as an experimental treatment of some brain cancers.

    References[edit]

    1. ^ "Standard Atomic Weights: Boron". CIAAW. 2009.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ a b "Atomic Weight of Boron". CIAAW.
  • ^ a b Leblond, S.; et al. (2018). "First observation of 20B and 21B". Physical Review Letters. 121 (26): 262502–1–262502–6. arXiv:1901.00455. doi:10.1103/PhysRevLett.121.262502. PMID 30636115. S2CID 58602601.
  • ^ Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix (November 2017). "Towards laser spectroscopy of the proton-halo candidate boron-8". Hyperfine Interactions. 238 (1): 25. Bibcode:2017HyInt.238...25M. doi:10.1007/s10751-017-1399-5. S2CID 254551036.
  • ^ Bellerive, A. (2004). "Review of solar neutrino experiments". International Journal of Modern Physics A. 19 (8): 1167–1179. arXiv:hep-ex/0312045. Bibcode:2004IJMPA..19.1167B. doi:10.1142/S0217751X04019093. S2CID 16980300.
  • ^ Cerdeno, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro; Vincent, Aaron C.; Boehm, Celine (2016). "Physics from solar neutrinos in dark matter direct detection experiments". JHEP. 2016 (5): 118. arXiv:1604.01025. Bibcode:2016JHEP...05..118C. doi:10.1007/JHEP05(2016)118. S2CID 55112052.

  • https://borates.today/isotopes-a-comprehensive-guide/#:~:text=Boron%20isotope%20elements%20with%20masses,11%20mostly%20decay%20into%20carbon.


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_boron&oldid=1219226019"

    Categories: 
    Isotopes of boron
    Boron
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
    Articles needing additional references from May 2018
    All articles needing additional references
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 16 April 2024, at 13:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki