Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  



1.1  Other uses of the chiral pool  



1.1.1  Chiral ligands from the chiral pool  





1.1.2  Chiral reagents from the chiral pool  





1.1.3  Resolving agents from the chiral pool  









2 References  














Chiral pool






Deutsch
Italiano

Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The chiral pool is a "collection of abundant enantiopure building blocks provided by nature" used in synthesis.[1][2] In other words, a chiral pool would be a large quantity of common organic enantiomers. Contributors to the chiral pool are amino acids, sugars, and terpenes. Their use improves the efficiency of total synthesis. Not only does the chiral pool contribute a premade carbon skeleton, their chirality is usually preserved in the remainder of the reaction sequence.

This strategy is especially helpful if the desired molecule resembles cheap enantiopure natural products. Many times, suitable enantiopure starting materials cannot be identified. The alternative to the use of the chiral pool is asymmetric synthesis, whereby achiral precursors are employed or racemic intermediates are resolved.

Examples[edit]

Use of verbenone (in red) as precursor to the drug paclitaxel.[1] (Wrong arrow - not a retrosynthesis)

The use of the chiral pool is illustrated by the synthesis of the anticancer drug paclitaxel (Taxol). The incorporation of the C10 precursor verbenone, a member of the chiral pool, makes the production of paclitaxel more efficient than most alternatives.

Chiral pool synthesis is used to build a part of epothilone (an alternative to paclitaxel) from readily available enantiopure (–)-pantolactone.[3]

Other uses of the chiral pool[edit]

In addition to serving as building blocks in total synthesis, the chiral pool is tapped to produce asymmetric catalysts, chiral protecting groups, and resolving agents.[4]

Chiral ligands from the chiral pool[edit]

Asymmetric catalysis relies on chiral ligands, which in turn are generally derived from the chiral pool. For example enantiopure 2,3-butanediol, derived from abundantly available tartaric acid, is used to synthesize chiraphos, a component of catalysts used for asymmetric hydrogenation:[5]

Chiral reagents from the chiral pool[edit]

Synth-Chiraphos.png
Synth-Chiraphos.png

Diisopinocampheylborane is an organoborane that is useful for asymmetric synthesisofsecondary alcohols. It is derived by hydroborationofα-pinene, a common diterpene member of the chiral pool.[6]

Resolving agents from the chiral pool[edit]

Many if not most of the common resolving agents are natural products or derivatives thereof. Illustrative is l-malic acid, a dicarboxylic acid that is found in apples. It is used to resolve α-phenylethylamine, a versatile resolving agent in its own right.[7]

References[edit]

  1. ^ a b Brill, Zachary G.; Condakes, Matthew L.; Ting, Chi P.; Maimone, Thomas J. (2017). "Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products". Chemical Reviews. 117 (18): 11753–11795. doi:10.1021/acs.chemrev.6b00834. PMC 5638449. PMID 28293944.
  • ^ Casiraghi, Giovanni.; Zanardi, Franca.; Rassu, Gloria.; Spanu, Pietro. (1995). "Stereoselective Approaches to Bioactive Carbohydrates and Alkaloids-With a Focus on Recent Syntheses Drawing from the Chiral Pool". Chemical Reviews. 95 (6): 1677–1716. doi:10.1021/cr00038a001.
  • ^ Ulrich Klar; et al. (2005). "Efficient Chiral Pool Synthesis of the C1-C6 Fragment of Epothilones". Synthesis. 2005 (2): 301–305. doi:10.1055/s-2004-834936.
  • ^ Blaser, Hans Ulrich (1992). "The chiral pool as a source of enantioselective catalysts and auxiliaries". Chemical Reviews. 92 (5): 935–952. doi:10.1021/cr00013a009.
  • ^ M. D. Fryzuk, B. Bosnich (1977). "Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation". J. Am. Chem. Soc. 99 (19): 6262–6267. doi:10.1021/ja00461a014. PMID 893889.
  • ^ Lane, C. F.; Daniels, J. J. (1972). "(−)-Isopincampheol". Organic Syntheses. 52: 59. doi:10.15227/orgsyn.052.0059.
  • ^ A. W. Ingersoll (1937). "D- and l-α-Phenylethylamine". Organic Syntheses. 17: 80. doi:10.15227/orgsyn.017.0080.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Chiral_pool&oldid=1174112740"

    Category: 
    Organic chemistry
     



    This page was last edited on 6 September 2023, at 11:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki