Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1History
 




2Production
 


2.1From nitric oxide
 




2.2Raschig process
 




2.3Other methods
 






3Reactions
 




4Functional group
 


4.1Synthesis
 






5Uses
 




6Laboratory uses
 




7Biochemistry
 




8Safety and environmental concerns
 




9See also
 




10References
 




11Further reading
 




12External links
 













Hydroxylamine






العربية
Azərbaycanca
تۆرکجه
Català
Čeština
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français

ि
Bahasa Indonesia
Italiano
Latviešu
Magyar
Македонски
Nederlands

Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Hydroxylamine
Stereo, skeletal formula of hydroxylamine with all explicit hydrogens added
Stereo, skeletal formula of hydroxylamine with all explicit hydrogens added
Ball-and-stick model of hydroxylamine
Ball-and-stick model of hydroxylamine
Stereo, skeletal formula of hydroxylamine with all explicit hydrogens added and assorted dimensions
Names
IUPAC name

Azinous acid

Preferred IUPAC name

Hydroxylamine (only preselected[1])

Other names
  • Aminol
  • Azanol
  • Hydroxyammonia
  • Hydroxyamine
  • Hydroxyazane
  • Hydroxylazane
  • Nitrinous acid
  • Identifiers

    CAS Number

    3D model (JSmol)

    3DMet
    ChEBI
    ChEMBL
    ChemSpider
    ECHA InfoCard 100.029.327 Edit this at Wikidata
    EC Number
    • 232-259-2

    Gmelin Reference

    478
    KEGG
    MeSH Hydroxylamine

    PubChem CID

    RTECS number
    • NC2975000
    UNII

    CompTox Dashboard (EPA)

    • InChI=1S/H3NO/c1-2/h2H,1H2 checkY

      Key: AVXURJPOCDRRFD-UHFFFAOYSA-N checkY

    • InChI=1/H3NO/c1-2/h2H,1H2

      Key: AVXURJPOCDRRFD-UHFFFAOYAD

    • NO

    Properties

    Chemical formula

    NH2OH
    Molar mass 33.030 g·mol−1
    Appearance Vivid white, opaque crystals
    Density 1.21 g cm−3 (at 20 °C)[2]
    Melting point 33 °C (91 °F; 306 K)
    Boiling point 58 °C (136 °F; 331 K) /22 mm Hg (decomposes)

    Solubility in water

    Soluble
    log P −0.758
    Acidity (pKa) 6.03 ([NH3OH]+)
    Basicity (pKb) 7.97
    Structure

    Coordination geometry

    Tricoordinated at N, dicoordinated at O

    Molecular shape

    Trigonal pyramidal at N, bent at O

    Dipole moment

    0.67553 D
    Thermochemistry

    Heat capacity (C)

    46.47 J/(K·mol)

    Std molar
    entropy
    (S298)

    236.18 J/(K·mol)

    Std enthalpy of
    formation
    fH298)

    −39.9 kJ/mol
    Hazards
    GHS labelling:

    Pictograms

    GHS01: ExplosiveGHS05: CorrosiveGHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard

    Signal word

    Danger

    Hazard statements

    H200, H290, H302, H312, H315, H317, H318, H335, H351, H373, H400

    Precautionary statements

    P201, P202, P234, P260, P261, P264, P270, P271, P272, P273, P280, P281, P301+P312, P302+P352, P304+P340, P305+P351+P338, P308+P313, P310, P312, P314, P321, P322, P330, P332+P313, P333+P313, P362, P363, P372, P373, P380, P390, P391, P401, P403+P233, P404, P405, P501
    NFPA 704 (fire diamond)
    NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g. hydrogen peroxideSpecial hazards (white): no code
    2
    1
    3
    Flash point 129 °C (264 °F; 402 K)

    Autoignition
    temperature

    265 °C (509 °F; 538 K)
    Lethal dose or concentration (LD, LC):

    LD50 (median dose)

    408 mg/kg (oral, mouse); 59–70 mg/kg (intraperitoneal mouse, rat); 29 mg/kg (subcutaneous, rat)[3]
    Safety data sheet (SDS) ICSC 0661
    Related compounds

    Related hydroxylammonium salts

  • Hydroxylammonium nitrate
  • Hydroxylammonium sulfate
  • Related compounds

  • Water
  • Hydrazine
  • Hydrogen peroxide
  • N,O-Dimethylhydroxylamine
  • N,N-Diethylhydroxylamine
  • Hydroxylamine-O-sulfonic acid
  • Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

    ☒N verify (what is checkY☒N ?)

    Infobox references

    Hydroxylamine (also known as hydroxyammonia) is an inorganic compound with the chemical formula NH2OH. The compound is in a form of a white hygroscopic crystals.[4] Hydroxylamine is almost always provided and used as an aqueous solution. It is consumed almost exclusively to produce Nylon-6. The oxidationofNH3 to hydroxylamine is a step in biological nitrification.[5]

    History[edit]

    Hydroxylamine was first prepared as hydroxylammonium chloride in 1865 by the German chemist Wilhelm Clemens Lossen (1838-1906); he reacted tin and hydrochloric acid in the presence of ethyl nitrate.[6] It was first prepared in pure form in 1891 by the Dutch chemist Lobry de Bruyn and by the French chemist Léon Maurice Crismer (1858-1944).[7][8] The coordination complex ZnCl2(NH2OH)2 (zinc dichloride di(hydroxylamine)), known as Crismer's salt, releases hydroxylamine upon heating.[9]

    Production[edit]

    Hydroxylamine or its salts (salts containing hydroxylammonium cations [NH3OH]+) can be produced via several routes but only two are commercially viable. It is also produced naturally as discussed in a section on biochemistry.

    From nitric oxide[edit]

    NH2OH is mainly produced as its sulfuric acid salt, hydroxylammonium hydrogen sulfate ([NH3OH]+[HSO4]), by the hydrogenationofnitric oxide over platinum catalysts in the presence of sulfuric acid.[10]

    2NO + 3 H2 + 2 H2SO4 → 2 [NH3OH]+[HSO4]

    Raschig process[edit]

    Another route to NH2OH is the Raschig process: aqueous ammonium nitriteisreducedbyHSO3 and SO2 at 0 °C to yield a hydroxylamido-N,N-disulfonate anion:

    [NH4]+[NO2] + 2 SO2 + NH3 + H2O → 2 [NH4]+ + N(OH)(SO3)2

    This anion is then hydrolyzed to give hydroxylammonium sulfate [NH3OH]2SO4:

    N(OH)(SO3)2 + H2O → NH(OH)(SO3) + HSO4
    2 NH(OH)(SO3) + 2 H2O → [NH3OH]2SO4 + SO2−4

    Solid NH2OH can be collected by treatment with liquid ammonia. Ammonium sulfate, [NH4]2SO4, a side-product insoluble in liquid ammonia, is removed by filtration; the liquid ammonia is evaporated to give the desired product.[4] The net reaction is:

    2NO2 + 4 SO2 + 6 H2O + 6 NH3 → 4 SO2−4 + 6 [NH4]+ + 2 NH2OH

    A base then frees the hydroxylamine from the salt:

    [NH3OH]Cl + NaO(CH2)3CH3 → NH2OH + NaCl + CH3(CH2)3OH[4]

    Other methods[edit]

    Julius Tafel discovered that hydroxylamine hydrochlorideorsulfate salts can be produced by electrolytic reductionofnitric acid with HClorH2SO4 respectively:[11][12]

    HNO3 + 3 H2 → NH2OH + 2 H2O

    Hydroxylamine can also be produced by the reduction of nitrous acidorpotassium nitrite with bisulfite:

    HNO2 + 2 HSO3 → N(OH)(OSO2)2 + H2O → NH(OH)(OSO2) + HSO4
    NH(OH)(OSO2) + [H3O]+ → [NH3OH]+ + HSO4 (100 °C, 1 h)

    Hydrochloric acid disproportionates nitromethanetohydroxylamine hydrochloride and carbon monoxide via the hydroxamic acid.[citation needed]

    A direct production of hydroxylamine from molecular nitrogen is also possible in water plasma.[13]

    Reactions[edit]

    Hydroxylamine reacts with electrophiles, such as alkylating agents, which can attach to either the oxygen or the nitrogen atoms:

    R−X + NH2OH → R−O−NH2 + HX
    R−X + NH2OH → R−NH−OH + HX

    The reaction of NH2OH with an aldehydeorketone produces an oxime.

    R2C=O + [NH3OH]Cl → R2C=N−OH + NaCl + H2O (inNaOH solution)

    This reaction is useful in the purification of ketones and aldehydes: if hydroxylamine is added to an aldehyde or ketone in solution, an oxime forms, which generally precipitates from solution; heating the precipitate with an inorganic acid then restores the original aldehyde or ketone.[14]

    Oximes such as dimethylglyoxime are also employed as ligands.

    NH2OH reacts with chlorosulfonic acid to give hydroxylamine-O-sulfonic acid:[15]

    HO−S(=O)2−Cl + NH2OH → NH2−O−S(=O)2−OH + HCl

    When heated, hydroxylamine explodes. A detonator can easily explode aqueous solutions concentrated above 80% by weight, and even 50% solution might prove detonable if tested in bulk.[16][17] In air, the combustion is rapid and complete:

    4 NH2OH + O2 → 2 N2 + 6 H2O

    Absent air, pure hydroxylamine requires stronger heating and the detonation does not complete combustion:

    3 NH2OH → N2 + NH3 + 3 H2O

    Partial isomerisation to the amine oxide H3N+−O contributes to the high reactivity.[18]

    Functional group[edit]

    Secondary N,N-hydroxylamine schema

    Substituted derivatives of hydroxylamine are known. When the hydroxyl or an amine hydrogen is substituted, such a molecule is called (respectively) an O- or N-hydroxylamine. In general N-hydroxylamines are more common. Examples are N-tert-butylhydroxylamine or the glycosidic bondincalicheamicin. N,O-Dimethylhydroxylamine is a precursor to Weinreb amides.

    Similarly to amines, one can distinguish hydroxylamines by their degree of substitution: primary, secondary and tertiary. When stored exposed to air for weeks, secondary hydroxylamines degrade to nitrones.[19]

    N-organylhydroxylamines, R−NH−OH, where R is an organyl group, can be reduced to amines R−NH2:[20]

    R−NH−OH (Zn, HCl) → R−NH2 + ZnO

    Synthesis[edit]

    Amine oxidation with benzoyl peroxide is the most common method to synthesize hydroxylamines. Care must be taken to prevent over-oxidation to a nitrone. Other methods include:

    Uses[edit]

    Conversion of cyclohexanone to caprolactam involving the Beckmann rearrangement.

    Approximately 95% of hydroxylamine is used in the synthesis of cyclohexanone oxime, a precursor to Nylon 6.[10] The treatment of this oxime with acid induces the Beckmann rearrangement to give caprolactam (3).[21] The latter can then undergo a ring-opening polymerization to yield Nylon 6.[22]

    Laboratory uses[edit]

    Hydroxylamine and its salts are commonly used as reducing agents in myriad organic and inorganic reactions. They can also act as antioxidants for fatty acids.

    High concentrations of hydroxylamine are used by biologists to introduce mutations by acting as a DNA nucleobase amine-hydroxylating agent.[23] In is thought to mainly act via hydroxylation of cytidine to hydroxyaminocytidine, which is misread as thymidine, thereby inducing C:G to T:A transition mutations.[24] But high concentrations or over-reaction of hydroxylamine in vitro are seemingly able to modify other regions of the DNA & lead to other types of mutations.[24] This may be due to the ability of hydroxylamine to undergo uncontrolled free radical chemistry in the presence of trace metals and oxygen, in fact in the absence of its free radical affects Ernst Freese noted hydroxylamine was unable to induce reversion mutations of its C:G to T:A transition effect & even considered hydroxylamine to be the most specific mutagen known.[25] Practically, it has been largely surpassed by more potent mutagens such as EMS, ENU, or nitrosoguanidine, but being a very small mutagenic compound with high specificity, it found some specialized uses such as mutation of DNA packed within bacteriophage capsids,[26] & mutation of purified DNA in vitro.[27]

    This route also involves the Beckmann Rearrangement, like the conversion from cyclohexanone to caprolactam.

    Analternative industrial synthesis of paracetamol developed by HoechstCelanese involves the conversion of ketone to a ketoxime with hydroxylamine.

    Some non-chemical uses include removal of hair from animal hides and photographic developing solutions.[2] In the semiconductor industry, hydroxylamine is often a component in the "resist stripper", which removes photoresist after lithography.

    Hydroxylamine can also be used to better characterize the nature of a post-translational modification onto proteins. For example, poly(ADP-Ribose) chains are sensitive to hydroxylamine when attached to glutamic or aspartic acids but not sensitive when attached to serines.[28] Similarly, Ubiquitin molecules bound to serines or threonines residues are sensitive to hydroxylamine, but those bound to lysine (isopeptide bond) are resistant.[29]

    Biochemistry[edit]

    In biological nitrification, the oxidation of NH3 to hydroxylamine is mediated by the ammonia monooxygenase (AMO).[5] Hydroxylamine oxidoreductase (HAO) further oxidizes hydroxylamine to nitrite.[30]

    Cytochrome P460, an enzyme found in the ammonia-oxidizing bacteria Nitrosomonas europea, can convert hydroxylamine to nitrous oxide, a potent greenhouse gas.[31]

    Hydroxylamine can also be used to highly selectively cleave asparaginyl-glycine peptide bonds in peptides and proteins.[32] It also bonds to and permanently disables (poisons) heme-containing enzymes. It is used as an irreversible inhibitor of the oxygen-evolving complex of photosynthesis on account of its similar structure to water.

    Safety and environmental concerns[edit]

    With a theoretical decomposition energy of about 5 kJ/g, hydroxylamine is an explosive, and aqueous solutions above 80% can be easily detonated by detonator or strong heating under confinement.[16] [17] At least two factories dealing in hydroxylamine have been destroyed since 1999 with loss of life.[33] It is known, however, that ferrous and ferric iron salts accelerate the decomposition of 50% NH2OH solutions.[34] Hydroxylamine and its derivatives are more safely handled in the form of salts.

    It is an irritant to the respiratory tract, skin, eyes, and other mucous membranes. It may be absorbed through the skin, is harmful if swallowed, and is a possible mutagen.[35]

    See also[edit]

    References[edit]

    1. ^ "Front Matter". Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 993. doi:10.1039/9781849733069-FP001 (inactive 2024-04-26). ISBN 978-0-85404-182-4.{{cite book}}: CS1 maint: DOI inactive as of April 2024 (link)
  • ^ a b Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  • ^ Martel, B.; Cassidy, K. (2004). Chemical Risk Analysis: A Practical Handbook. Butterworth–Heinemann. p. 362. ISBN 978-1-903996-65-2.
  • ^ a b c Greenwood and Earnshaw. Chemistry of the Elements. 2nd Edition. Reed Educational and Professional Publishing Ltd. pp. 431–432. 1997.
  • ^ a b Lawton, Thomas J.; Ham, Jungwha; Sun, Tianlin; Rosenzweig, Amy C. (2014-09-01). "Structural conservation of the B subunit in the ammonia monooxygenase/particulate methane monooxygenase superfamily". Proteins: Structure, Function, and Bioinformatics. 82 (9): 2263–2267. doi:10.1002/prot.24535. ISSN 1097-0134. PMC 4133332. PMID 24523098.
  • ^ W. C. Lossen (1865) "Ueber das Hydroxylamine" (On hydroxylamine), Zeitschrift für Chemie, 8 : 551-553. From p. 551: "Ich schlage vor, dieselbe Hydroxylamin oder Oxyammoniak zu nennen." (I propose to call it hydroxylamineoroxyammonia.)
  • ^ C. A. Lobry de Bruyn (1891) "Sur l'hydroxylamine libre" (On free hydroxylamine), Recueil des travaux chimiques des Pays-Bas, 10 : 100-112.
  • ^ L. Crismer (1891) "Préparation de l'hydroxylamine cristallisée" (Preparation of crystalized hydroxylamine), Bulletin de la Société chimique de Paris, series 3, 6 : 793-795.
  • ^ Walker, John E.; Howell, David M. (1967). "Dichlorobis(hydroxylamine)zinc(II) (Crismer's Salt)". Inorganic Syntheses. Vol. 9. pp. 2–3. doi:10.1002/9780470132401.ch2. ISBN 9780470132401.
  • ^ a b Ritz, Josef; Fuchs, Hugo; Perryman, Howard G. (2000). "Hydroxylamine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_527. ISBN 978-3527306732.
  • ^ James Hale, Arthur (1919). The Manufacture of Chemicals by Electrolysis (1st ed.). New York: D. Van Nostrand Co. p. 32. Retrieved 5 June 2014. manufacture of chemicals by electrolysis hydroxylamine 32.
  • ^ Osswald, Philipp; Geisler, Walter (1941). Process of preparing hydroxylamine hydrochloride (US2242477) (PDF). U.S. Patent Office.
  • ^ Zhang, Xiaoping; Su, Rui; Li, Jingling; Huang, Liping; Yang, Wenwen; Chingin, Konstantin; Balabin, Roman; Wang, Jingjing; Zhang, Xinglei; Zhu, Weifeng; Huang, Keke; Feng, Shouhua; Chen, Huanwen (2024). "Efficient catalyst-free N2 fixation by water radical cations under ambient conditions". Nature Communications. 15 (1) 1535: 1535. doi:10.1038/s41467-024-45832-9. PMC 10879522. PMID 38378822.
  • ^ Ralph Lloyd Shriner, Reynold C. Fuson, and Daniel Y. Curtin, The Systematic Identification of Organic Compounds: A Laboratory Manual, 5th ed. (New York: Wiley, 1964), chapter 6.
  • ^ Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry. Academic Press. pp. 675–677. ISBN 978-0-12-352651-9.
  • ^ a b Iwata, Yusaku; Koseki, Hiroshi; Hosoya, Fumio (2003-01-01). "Study on decomposition of hydroxylamine/water solution". Journal of Loss Prevention in the Process Industries. 16 (1): 41–53. doi:10.1016/S0950-4230(02)00072-4. ISSN 0950-4230.
  • ^ a b Bretherick's Handbook of Reactive Chemical Hazards. ISBN 9780081009710. Retrieved 2023-08-28.
  • ^ Kirby, AJ; Davies, JE; Fox, DJ; Hodgson, DR; Goeta, AE; Lima, MF; Priebe, JP; Santaballa, JA; Nome, F (28 February 2010). "Ammonia oxide makes up some 20% of an aqueous solution of hydroxylamine". Chemical Communications. 46 (8): 1302–4. doi:10.1039/b923742a. PMID 20449284.
  • ^ Hamer, Jan; Macaluso, Anthony (1964) [29 Feb 1964]. "Nitrones". Chemical Reviews. 64 (4): 476. doi:10.1021/cr60230a006.
  • ^ Smith, Michael and Jerry March. March's advanced organic chemistry : reactions, mechanisms, and structure. New York. Wiley. p. 1554. 2001.
  • ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012). Organic chemistry (2nd ed.). Oxford University Press. p. 958. ISBN 978-0-19-927029-3.
  • ^ Nuyken, Oskar; Pask, Stephen (25 April 2013). "Ring-Opening Polymerization—An Introductory Review". Polymers. 5 (2): 361–403. doi:10.3390/polym5020361.
  • ^ Waugh, Robbie; Leader, David J.; McCallum, Nicola; Caldwell, David (2006). "Harvesting the potential of induced biological diversity". Trends in Plant Science. 11 (2). Elsevier BV: 71–79. doi:10.1016/j.tplants.2005.12.007. ISSN 1360-1385. PMID 16406304.
  • ^ a b Busby, Stephen; Irani, Meher; de Crombrugghe, Benoít (1982). "Isolation of mutant promoters in the Escherichia coli galactose operon using local mutagenesis on cloned DNA fragments". Journal of Molecular Biology. 154 (2). Elsevier BV: 197–209. doi:10.1016/0022-2836(82)90060-2. ISSN 0022-2836. PMID 7042980.
  • ^ Hollaender, Alexander (1971). Chemical Mutagens : Principles and Methods for Their Detection Volume 1. Boston, MA: Springer US. p. 41. ISBN 978-1-4615-8968-6. OCLC 851813793.
  • ^ Hong, J.-S.; Ames, B. N. (1971-12-01). "Localized Mutagenesis of Any Specific Small Region of the Bacterial Chromosome". Proceedings of the National Academy of Sciences. 68 (12): 3158–3162. Bibcode:1971PNAS...68.3158H. doi:10.1073/pnas.68.12.3158. ISSN 0027-8424. PMC 389612. PMID 4943557.
  • ^ Forsberg, Susan. "Hydroxylamine Mutagenesis of plasmid DNA". PombeNet. University of Southern California. Retrieved 9 December 2021.
  • ^ Langelier, Marie-France; Billur, Ramya; Sverzhinsky, Aleksandr; Black, Ben E.; Pascal, John M. (2021-11-18). "HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications". Nature Communications. 12 (1): 6675. Bibcode:2021NatCo..12.6675L. doi:10.1038/s41467-021-27043-8. ISSN 2041-1723. PMC 8602370. PMID 34795260.
  • ^ Kelsall, Ian R.; Zhang, Jiazhen; Knebel, Axel; Arthur, J. Simon C.; Cohen, Philip (2019-07-02). "The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells". Proceedings of the National Academy of Sciences. 116 (27): 13293–13298. Bibcode:2019PNAS..11613293K. doi:10.1073/pnas.1905873116. ISSN 0027-8424. PMC 6613137. PMID 31209050.
  • ^ Arciero, David M.; Hooper, Alan B.; Cai, Mengli; Timkovich, Russell (1993-09-01). "Evidence for the structure of the active site heme P460 in hydroxylamine oxidoreductase of Nitrosomonas". Biochemistry. 32 (36): 9370–9378. doi:10.1021/bi00087a016. ISSN 0006-2960. PMID 8369308.
  • ^ Caranto, Jonathan D.; Vilbert, Avery C.; Lancaster, Kyle M. (2016-12-20). "Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission". Proceedings of the National Academy of Sciences. 113 (51): 14704–14709. Bibcode:2016PNAS..11314704C. doi:10.1073/pnas.1611051113. ISSN 0027-8424. PMC 5187719. PMID 27856762.
  • ^ Bornstein, Paul; Balian, Gary (1977). "Cleavage at AsnGly bonds with hydroxylamine". Enzyme Structure Part E. Methods in Enzymology. Vol. 47(Enzyme Struct., Part E). pp. 132–45. doi:10.1016/0076-6879(77)47016-2. ISBN 978-0-12-181947-7. PMID 927171.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • ^ Japan Science and Technology Agency Failure Knowledge Database Archived 2007-12-20 at the Wayback Machine.
  • ^ Cisneros, L. O.; Rogers, W. J.; Mannan, M. S.; Li, X.; Koseki, H. (2003). "Effect of Iron Ion in the Thermal Decomposition of 50 mass% Hydroxylamine/Water Solutions". J. Chem. Eng. Data. 48 (5): 1164–1169. doi:10.1021/je030121p.
  • ^ MSDS Sigma-Aldrich
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hydroxylamine&oldid=1221597565"

    Categories: 
    Functional groups
    Inorganic amines
    Hydroxylamines
    Photographic chemicals
    Rocket fuels
    Reducing agents
    Nitrogen oxoacids
    Hidden categories: 
    CS1 maint: DOI inactive as of April 2024
    CS1 maint: multiple names: authors list
    CS1: long volume value
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
    Articles with changed EBI identifier
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from March 2024
    All articles with dead external links
    Articles with dead external links from December 2022
    Articles with permanently dead external links
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 30 April 2024, at 21:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki