Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of isotopes  





2 Notable isotopes  



2.1  Krypton-81  





2.2  Krypton-85  



2.2.1  Atmospheric concentration  







2.3  Krypton-86  





2.4  Others  







3 References  



3.1  Sources  







4 External links  














Isotopes of krypton






العربية
Català
Чӑвашла
Čeština
Dansk
Español
فارسی
Français

Bahasa Indonesia
Magyar
Nederlands

Русский
Türkçe


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Krypton-81)

Isotopesofkrypton (36Kr)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
78Kr 0.360% 9.2×1021 y[2] εε 78Se
79Kr synth 35 h ε 79Br
β+ 79Br
γ
80Kr 2.29% stable
81Kr trace 2.3×105 y ε 81Br
81mKr synth 13.10 s IT 81Kr
ε 81Br
82Kr 11.6% stable
83Kr 11.5% stable
84Kr 57.0% stable
85Kr trace 11 y β 85Rb
86Kr 17.3% stable
Standard atomic weight Ar°(Kr)
  • 83.798±0.002[3]
  • 83.798±0.002 (abridged)[4]
  • talk
  • edit
  • There are 34 known isotopesofkrypton (36Kr) with atomic mass numbers from 69 through 102.[5][6] Naturally occurring krypton is made of five stable isotopes and one (78
    Kr
    ) which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

    List of isotopes

    [edit]
    Nuclide
    [n 1]
    Z N Isotopic mass (Da)[7]
    [n 2][n 3]
    Half-life[1]
    [n 4][n 5]
    Decay
    mode
    [1]
    [n 6]
    Daughter
    isotope

    [n 7][n 8]
    Spin and
    parity[1]
    [n 9][n 5]
    Natural abundance (mole fraction)
    Excitation energy Normal proportion[1] Range of variation
    67Kr 36 31 66.98331(46)# 7.4(29ms β+? (63%) 67Br 3/2-#
    2p (37%) 65Se
    68Kr 36 32 67.97249(54)# 21.6(33ms β+, p (>90%) 67Se 0+
    β+? (<10%) 68Br
    p? 67Br
    69Kr 36 33 68.96550(32)# 27.9(8ms β+, p (94%) 68Se (5/2−)
    β+ (6%) 69Br
    70Kr 36 34 69.95588(22)# 45.00(14ms β+ (>98.7%) 70Br 0+
    β+, p (<1.3%) 69Se
    71Kr 36 35 70.95027(14) 98.8(3ms β+ (97.9%) 71Br (5/2)−
    β+, p (2.1%) 70Se
    72Kr 36 36 71.9420924(86) 17.16(18s β+ 72Br 0+
    73Kr 36 37 72.9392892(71) 27.3(10s β+ (99.75%) 73Br (3/2)−
    β+, p (0.25%) 72Se
    73mKr 433.55(13) keV 107(10ns IT 73Kr (9/2+)
    74Kr 36 38 73.9330840(22) 11.50(11) min β+ 74Br 0+
    75Kr 36 39 74.9309457(87) 4.60(7) min β+ 75Br 5/2+
    76Kr 36 40 75.9259107(43) 14.8(1h β+ 76Br 0+
    77Kr 36 41 76.9246700(21) 72.6(9) min β+ 77Br 5/2+
    77mKr 66.50(5) keV 118(12ns IT 77Kr 3/2−
    78Kr[n 10] 36 42 77.92036634(33) 9.2 +5.5
    −2.6
    ±1.3×1021y
    [2]
    Double EC 78Se 0+ 0.00355(3)
    79Kr 36 43 78.9200829(37) 35.04(10h β+ 79Br 1/2−
    79mKr 129.77(5) keV 50(3s IT 79Kr 7/2+
    80Kr 36 44 79.91637794(75) Stable 0+ 0.02286(10)
    81Kr[n 11] 36 45 80.9165897(12) 2.29(11)×105 y EC 81Br 7/2+ 6×10−13[8]
    81mKr 190.64(4) keV 13.10(3s IT 81Kr 1/2−
    EC (0.0025%) 81Br
    82Kr 36 46 81.9134811537(59) Stable 0+ 0.11593(31)
    83Kr[n 12] 36 47 82 914126.516(9) Stable 9/2+ 0.11500(19)
    83m1Kr 9.4053(8) keV 156.8(5ns IT 83Kr 7/2+
    83m2Kr 41.5575(7) keV 1.830(13h IT 83Kr 1/2−
    84Kr[n 12] 36 48 83.9114977271(41) Stable 0+ 0.56987(15)
    84mKr 3236.07(18) keV 1.83(4) μs IT 84Kr 8+
    85Kr[n 12] 36 49 84.9125273(21) 10.728(7y β 85Rb 9/2+ 1×10−11[8]
    85m1Kr 304.871(20) keV 4.480(8h β (78.8%) 85Rb 1/2−
    IT (21.2%) 85Kr
    85m2Kr 1991.8(2) keV 1.82(5) μs
    IT 85Kr (17/2+)
    86Kr[n 13][n 12] 36 50 85.9106106247(40) Observationally Stable[n 14] 0+ 0.17279(41)
    87Kr 36 51 86.91335476(26) 76.3(5) min β 87Rb 5/2+
    88Kr 36 52 87.9144479(28) 2.825(19h β 88Rb 0+
    89Kr[n 12] 36 53 88.9178354(23) 3.15(4) min β 89Rb 3/2+
    90Kr 36 54 89.9195279(20) 32.32(9s β 90mRb 0+
    91Kr 36 55 90.9238063(24) 8.57(4s β 91Rb 5/2+
    β, n? 90Rb
    92Kr[n 12] 36 56 91.9261731(29) 1.840(8s β (99.97%) 92Rb 0+
    β, n (0.0332%) 91Rb
    93Kr 36 57 92.9311472(27) 1.287(10s β (98.05%) 93Rb 1/2+
    β, n (1.95%) 92Rb
    94Kr 36 58 93.934140(13) 212(4ms β (98.89%) 94Rb 0+
    β, n (1.11%) 93Rb
    95Kr 36 59 94.939711(20) 114(3ms β (97.13%) 95Rb 1/2+
    β, n (2.87%) 94Rb
    β, 2n? 93Rb
    95mKr 195.5(3) keV 1.582(22) μs
    IT 85Kr (7/2+)
    96Kr 36 60 95.942998(62)[9] 80(8ms β (96.3%) 96Rb 0+
    β, n (3.7%) 95Rb
    97Kr 36 61 96.94909(14) 62.2(32ms β (93.3%) 97Rb 3/2+#
    β, n (6.7%) 96Rb
    β, 2n? 95Rb
    98Kr 36 62 97.95264(32)# 42.8(36ms β (93.0%) 98Rb 0+
    β, n (7.0%) 97Rb
    β, 2n? 96Rb
    99Kr 36 63 98.95878(43)# 40(11ms β (89%) 99Rb 5/2−#
    β, n (11%) 98Rb
    β, 2n? 97Rb
    100Kr 36 64 99.96300(43)# 12(8ms β 100Rb 0+
    β, n? 99Rb
    β, 2n? 98Rb
    101Kr 36 65 100.96932(54)# 9# ms
    [>400 ns]
    β? 101Rb 5/2+#
    β, n? 100Rb
    β, 2n? 99Rb
    102Kr[10] 36 66 0+
    103Kr[11] 36 67
    This table header & footer:
    1. ^ mKr – Excited nuclear isomer.
  • ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  • ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  • ^ Bold half-life – nearly stable, half-life longer than age of universe.
  • ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  • ^ Modes of decay:
    n: Neutron emission
  • ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  • ^ Bold symbol as daughter – Daughter product is stable.
  • ^ ( ) spin value – Indicates spin with weak assignment arguments.
  • ^ Primordial radionuclide
  • ^ Used to date groundwater
  • ^ a b c d e f Fission product
  • ^ Formerly used to define the meter
  • ^ Believed to decay by ββto86Sr
  • Notable isotopes

    [edit]

    Krypton-81

    [edit]

    Radioactive krypton-81 is the product of spallation reactions with cosmic rays striking gases present in the Earth atmosphere, along with the six stable or nearly stable krypton isotopes.[12] Krypton-81 has a half-life of about 229,000 years.

    Krypton-81 is used for dating ancient (50,000- to 800,000-year-old) groundwater and to determine their residence time in deep aquifers. One of the main technical limitations of the method is that it requires the sampling of very large volumes of water: several hundred liters or a few cubic meters of water. This is particularly challenging for dating pore water in deep clay aquitards with very low hydraulic conductivity.[13]

    Krypton-85

    [edit]

    Krypton-85 has a half-life of about 10.75 years. This isotope is produced by the nuclear fissionofuranium and plutoniuminnuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is inevitable that krypton-85 is released during the reprocessingoffuel rods from nuclear reactors.[citation needed]

    Atmospheric concentration

    [edit]

    The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the Amundsen–Scott South Pole Station because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the northern hemisphere, and also well-north of the equator.[14] To be more specific, those nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan.

    Krypton-86

    [edit]

    Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 606 nm (orange) spectral line of a krypton-86 atom.[15]

    Others

    [edit]

    All other radioisotopes of krypton have half-lives of less than one day, except for krypton-79, a positron emitter with a half-life of about 35.0 hours.

    References

    [edit]
    1. ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  • ^ a b Patrignani, C.; et al. (Particle Data Group) (2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. See p. 768
  • ^ "Standard Atomic Weights: Krypton". CIAAW. 2001.
  • ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  • ^ "Chart of Nuclides". Brookhaven National Laboratory. Archived from the original on 2017-10-18. Retrieved 2011-11-21.
  • ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  • ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  • ^ a b Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater". Physics Today. 66 (3): 74–75. Bibcode:2013PhT....66c..74L. doi:10.1063/PT.3.1926. Retrieved 29 June 2024.
  • ^ Smith, Matthew B.; Murböck, Tobias; Dunling, Eleanor; Jacobs, Andrew; Kootte, Brian; Lan, Yang; Leistenschneider, Erich; Lunney, David; Lykiardopoulou, Eleni Marina; Mukul, Ish; Paul, Stefan F.; Reiter, Moritz P.; Will, Christian; Dilling, Jens; Kwiatkowski, Anna A. (2020). "High-precision mass measurement of neutron-rich 96Kr". Hyperfine Interactions. 241 (1): 59. Bibcode:2020HyInt.241...59S. doi:10.1007/s10751-020-01722-2. S2CID 220512482.
  • ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  • ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
  • ^ Leya, I.; Gilabert, E.; Lavielle, B.; Wiechert, U.; Wieler, W. (2004). "Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known 36Cl-36Ar ages" (PDF). Antarctic Meteorite Research. 17: 185–199. Bibcode:2004AMR....17..185L.
  • ^ N. Thonnard; L. D. MeKay; T. C. Labotka (2001). Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences (PDF) (Report). University of Tennessee, Institute for Rare Isotope Measurements. pp. 4–7. doi:10.2172/809813.
  • ^ "Resources on Isotopes". U.S. Geological Survey. Archived from the original on 2001-09-24. Retrieved 2007-03-20.
  • ^ Baird, K. M.; Howlett, L. E. (1963). "The International Length Standard". Applied Optics. 2 (5): 455–463. Bibcode:1963ApOpt...2..455B. doi:10.1364/AO.2.000455.
  • Sources

    [edit]
    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_krypton&oldid=1232414247#Krypton-81"

    Categories: 
    Isotopes of krypton
    Krypton
    Lists of isotopes by element
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from May 2018
    All articles needing additional references
    Articles to be expanded from October 2019
    All articles to be expanded
    Articles using small message boxes
    All articles with unsourced statements
    Articles with unsourced statements from February 2022
    Webarchive template wayback links
     



    This page was last edited on 3 July 2024, at 16:22 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki